Описание конструкции конкретного объекта автоматизации и — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Описание конструкции конкретного объекта автоматизации и

2022-10-28 32
Описание конструкции конкретного объекта автоматизации и 0.00 из 5.00 0 оценок
Заказать работу

СОДЕРЖАНИЕ

Введение

Описание конструкции конкретного объекта автоматизации и

технологического процесса

ППР – Обжиговая печь

Качество известняка

Остаточный СО2

Реакционная способность

Объём воздуха

Загрузка известняка в весовые дозаторы

Газ

Топливо

Зажигательная горелка

Нагревательная горелка

Эксплуатация печи

Известковая печь как объект управления

Построение функциональной схемы автоматизации и выбор технических

средств.

Построение принципиальной схемы контура контроля

Техника безопасности и охрана труда

Расчётный лист

Вывод

Список литературы


Введение

 

Проектирование автоматизированных систем управления технологическими процессами требует глубоких знаний и практического усвоения методов синтеза автоматических систем управления. Задачи синтеза АСУ решаются на основании динамических свойств объектов управления и требований, предъявляемых к системам.

Развитие современного металлургического производства сопровождается интенсификацией технологических и производственных процессов. Создание крупных металлургических агрегатов и их комплексов позволяет более эффективно использовать сырье, топливо, капиталовложения. В то же время осуществлять управление металлургическими процессами в больших и сложных технологических объектах без использования новейших методов и средств управления - неэффективно или вообще невозможно.

Эффективным средством управления технологическими объектами являются системы централизованного управления, использующие вычислительную и управляющую технику. Такие системы управления получили наименование автоматизированных систем управления технологическими процессами. АСУ ТП включает в себя большую область систем управления технологическими процессами с разной степенью освобождения человека от функций контроля и управления.

АСУ ТП представляют собой качественно новую ступень развития средств и методов управления технологическими объектами, так как в них используются технологические и технико-экономические параметры и критерии, а не только технические, как это имело место ранее. В АСУ ТП воплощены достижения локальной автоматики, систем централизованного контроля, электронной и вычислительной техники. Кроме того, АСУ ТП производит общую централизованную обработку первичной информации в темпе протекания технологического процесса, после чего информация используется не только для управления этим процессом, но и преобразуется в форму, пригодную для использования на вышестоящих уровнях управления для решения оперативных задач.

Так как АСУ ТП выполняет и экономико-информационные функции, то она приобретает огромное значение в управлении агрегатами и процессами.


Описание конструкции конкретного объекта автоматизации и

Технологического процесса.

 

Известь - один из ключевых элементов в жизни. Этот естественный материал вовлечен в производство большинства современных изделий. Производство стали, золота, серебра, меди и пластмасс, а также многих химических изделий и пищевых продуктов. Наиболее важные области применения извести и доломита извести:

­ Металлургия

­ Цветные металлы

­ Строительство

­ Химическая промышленность

­ Пищевая промышленность

­ Сельское хозяйство

­ Агрономия

­ Медицина

­ Обработка сточных вод.

По всему миру производится больше чем 120 миллионов тонн в год извести и доломита извести. Черная металлургия - первичный потребитель с ежегодным спросом приблизительно 40 миллионов тонн.

Высококачественный известняк содержит от 97 до 99 % СаСO3. Требует приблизительно 1.75 тонны известняка, чтобы произвести одну тонну известа. Высококачественный доломит содержит 40 - 43 % МgСО3 и 57 - 60 % СаСО3. Требует приблизительно 2 тонны доломитного известняка, чтобы произвести одну тонну доломитной извести.

Обжиг известняка и доломита - простой химический процесс. Нагрев карбоната и его разложение происходит согласно соответствующего уравнения.

СаС03 + приблизительно 3180 кДж (760 килокалорий) = СаО + СО2,

3) 2 + приблизительно 3050 кДж (725 килокалорий) - СаО(МgО) + 2 СО2,

Температура разложения зависит от парциального давления углеродистого диоксида в атмосфере процесса. В атмосфере газа сгорания, нормального давления и 25 % СО2, разложение известняка начинается при 810°С, в атмосфере 100 % С02, начальная температура разложения была бы 900°С. Доломит разлагается в двух стадиях, начинающихся приблизительно при 550°С для МgСО3 и приблизительно 810°С для СаСО3

Чтобы полностью обжигать известняк и не иметь ядро, теплота, через поверхности известняка должна проникнуть к ядру. Температура 900 °С должна быть достигнута в ядре по крайней мере в течение короткого периода времени, так как атмосфера внутри материала - чистый С02. Каменная поверхность должна быть нагрета больше чем нз 900 °С, чтобы поддержать требуемый температурный градиент и преодолеть эффект изолирования сожженного материала на поверхности известняка. При получении мягко-обожженной извести поверхностная температура не должна превысить 1100 1150°С, иначе произойдет рекристаллизация СаО и как следствие - более низкая реакционная способность продукта и изменения свойств обожженной извести.

Некоторая выдержка или время выдержки требуются, чтобы передать теплоту от газов сгорания до поверхности известняка и затем от поверхности до ядра известняка. Большие камни требуют более длительного времени обжига. Обжиг в более высоких температурах уменьшает необходимое время выдержки. Однако слишком высокие температуры неблагоприятно затронут реакционную способность изделия. Отношение между температурой горения и временем выдержки, требуемого для различного фракционного состава показывается далее.

Фракция Температура Обжига Приблизительное время

[Мм] [°С] [часы]

50 1200 0.7

1000 2.1

100 1200 2.9

1000 8.3

Оборудование для производства извести

Используются два типа обжиговых печей, чтобы обжечь известняк и доломит в современной промышленности:

Ротационные (вращающиеся) обжиговые печи

Вертикальные или шахтные печи.

Ротационные обжиговые печи с подогревателем, обычно перерабатывают известняк фракции 6-50 мм. Тепловой баланс этого типа обжиговых печей характеризован довольно высокими потерями с отходящими газами и через горловину обжиговой печи. Потери с отходящими газами находятся в диапазоне от 20 до 25%, потери через кожух обжиговой печи от 15 до 20% необходимого тепла. Только приблизительно 60% топливной энергии, подаваемой в обжиговые печи с подогревателем, используются для процесса обжига непосредственно.

Для всех типов вертикальных одношахтных печей имеет неустойчивость между теплотой, удалённой от зоны обжига и теплоты, требуемой в зоне прогрева. Даже с идеальным процессом обжига (с избытком воздуха 1.0) отходящий газ с температурой 100°С может быть только с известняком, содержащим меньше чем 88 % СаСОз. Однако, известь, произведенная из такого известняка, имеет ограниченную область применения. В известняках, на практике, намного более высокое содержание карбоната, более высокая температура отходящего газа при производстве, которая является последствием избытка теплоты в зоне прогрева. Как же может избыточная теплота, в зоне обжига обжиговой печи использоваться, чтобы минимизировать потребление теплоты и как современные типы обжиговой печи соответствуют этому аспекту. Совершенное решение этой проблеме - Прямоточно-Противоточная Регенеративная Обжиговая печь Извести (ППР - ОБЖИГОВАЯ ПЕЧЬ),

ППР - ОБЖИГОВАЯ ПЕЧЬ

 

Существуют два главных типа вертикальных шахтных печей. Одна шахта противостоит потоку, нагревающему обжиговую печь и шахта с параллельными потоками, нагревающими обжиговую печь. Стандарт ППР - ОБЖИГОВАЯ ПЕЧЬ - обжиговая печь с двумя шахтами чередуя горящее и не горящее действие шахты. Есть две ключевых характеристики ППР - ПЕЧИ:

1) параллельный поток горячих газов и камня в зоне обжига;

2) регенеративный прогрев всего воздуха для горения в процессе.

Обжиговая ППР - печь идеально подходит для производства мягко-обожженной, высоко реактивной извести и доломит извести из-за условий, созданных параллельным потоком камня и газов сгорания в "горящей шахте". Дополнительно, регенеративный процесс обеспечивает самое низкое потребление тепла всех современных обжиговых печей.

Поскольку количество охлаждения воздуха - не достаточно для полного сгорания топлива, дополнительный воздух, должен быть подан через боковые горелки. Как в этом типе обжиговой печи топливо подаётся в нижней части зоны обжига (где материал уже обожжен) температура в этой области значительно выше, чем требуется для производства высоко-реактивной извести.

В ППР обжиговых печах топливо подается в верхнюю часть зоны обжига и выхода газов сгорания, параллельно материалу. Поскольку топливо введено в верхний коней зоны обжига, где материал может поглощать большинство теплоты освобождаемой топливом температура в зоне обжига - обычно 950°С. Из-за этого, параллельное нагревание потока - лучшее решение по производству мягко-обожженной, реактивной извести и доломит извести.

Вторая важная характеристика ППР - ПЕЧИ - регенеративный подогрев воздуха для горения. В обжиговых печах со встречным потоками, воздух для горения - подогревается в охлаждающейся зоне в обожженной извести. Однако прогрев ограничен энтальпией извести. Во встречном процессе нагревания потока есть излишек теплосодержания годного к употреблению, содержимого в отходящем газе, который не восстановлен до истощения. Некоторые отдельные проекты шахтной печи, поэтому включили рекуператоры, чтобы возвратить это отработанное тепло, но такие теплообменники восприимчивы к разрушениям, вызванными пылью, содержащейся вгорячих отходящих газах.

Регенеративный процесс требует двух связанных шахт. Каждая шахта подчинена двум различным режимам работы, "горения" и "не горения". Одна шахта работает на "горение" и одновременно, вторая шахта работает в противотоке. Каждая шахта проводит равное количество времени в режимах работы "не горения" и "горения".

В "горящем способе", шахта характеризована параллельным потоком газов сгорания и сырого камня, принимая во внимание, что, в "не горящем" способе шахта характеризована противоточным потоком сырого камня и отходящих газов.

Регенеративный прогрев воздуха для горения делает тепловую эффективность обжиговой печи фактически независимой от фактора избытка воздуха для горения. Это значительно упрощает регулирование правильной длины пламени, чтобы произвести желательное качество мягко-обожженной извести. Большее количество избытка воздуха - более короткое пламя, и меньшее количество избытка воздуха - более длинное пламя. Длина пламени - один из ключевых факторов, чтобы управлять реакционной способностью негашеной извести. Вообще короткий факел и более горячий огонь уменьшает реакционную способность обожженного изделияю.

Две шахты, обозначили 1 и 2, содержат материал, который будет обожжен. Шахты поочередно или одновременно наполняют известняком в зависимости от вместимости обжиговой печи. Известь выгружается непрерывно из обеих шахт. Топливо подаётся только в одну из двух шахт. Например шахта № 1 горящая шахта и шахта № 2 не горящая шахта. Топливо подается через газовые трубы, фурмы, которые вертикально простираются до зоны прогрева. Более низкий конец трубы, фурмы, отмечает переход к зоне обжига от зоны прогрева. Топливо введено через эти фурмы и равномерно распределено по всей области шахты.

Воздух для горения подаётся под давлением наверху зоны прогрева выше футеровки. Вся система герметична. Воздух для горения - подогревается камнем в регенераторе (зона прогрева) до смешивания с топливом. Воздушно-топливное пламя находится в прямом контакте с материалом обжига, поскольку это проходит через зону обжига сверху донизу (параллельное нагревание потока).

Дымовые газы через соединительный канал проходят из шахты, работающей в прямотоке, в шахту, работающую в противотоке, путешествуя во встречном потоке к камню. Теплота передаётся от газов камню и футеровке в не горящей шахте. Отходящие газы подогревают футеровку в зоне прогрева и подготавливают шахту к следующему циклу горения в этой шахте.

Смена от "горения" до "не горения называется" «периодом переключения». В течение каждого «периода переключения» взвешенное количество известняка наполняет обжиговую печь. Продукт обжига выгружается из обеих шахт непрерывно во время цикла обжига столами разгрузки в герметичный бункер. Воздух на охлаждение непрерывно подаётся снизу в обе шахты, чтобы уменьшить температуру изделия до выгрузки в бункер извести. Во время переключения, когда обжиговая печь разгерметизирована, изделие выгружается из бункера на вибропитатели и конвейера.

Превосходная тепловая конструкция ППР - ПЕЧИ может быть удовлетворительно доказана посредством баланса теплоты. Сумма эффективной теплоты, то есть теплоты, требуемой для разложения, и тепловых потерь обеспечивает тепловую потребность обжиговой печи. Тепловые потери состоят;

• Потеря через футеровку обжиговой печи равняется приблизительно 170 кДж(40 килокалорий) / кг извести,

• Теплосодержание выгружаемой негашеной извести равняется приблизительно 80 кДж (20 килокалорий) / кг извести при разгрузке температура 100°С,

• Теплосодержание, содержимое в отходящих газах приблизительно 290 кДж (70 килокалорий) / кг извести при разгрузке температура 100°С.

Поскольку обжиговая печь не имеет никакого перемещения, как ротационная обжиговая печь, потери через стены может быть сокращенна к минимуму, используя соответствующее свойство теплоизоляционного огнеупора. Дополнительная изоляция, чтобы далее уменьшить стенные потери, была бы слишком дорогостоящая.

Достаточное количество воздуха на охлаждение используется, чтобы уменьшить температуру обожженной извести в охлаждающейся зоне. Нагретый воздух впоследствии используется в процессе, таким образом, улучшающем эффективности обжиговой печи.

Хотя теоретически возможно уменьшить температуру отходящего газа ниже 100°С, это не желательно из-за уплотнения и проблем коррозии при действии в диапазоне точки росы газов.

Рассмотрение этих критериев проекта для тепловых потерей обжиговой печи при производстве извести с 96 % СаО полное тепловое требование - приблизительно 3500 кДж (840 килокалорий) / кг.

ППР - ОБЖИГОВЫЕ ПЕЧИ типично разрабатываются с двумя шахтами прямоугольной или круглой формы. Шахты связаны соединительным каналом в нижней части зоны обжига. Соединительный канал служит как транспортный трубопровод, чтобы позволить горячим газам выходить из "горящей шахты" и входить в "не горящую шахту".

ППР - ПЕЧИ с двумя шахтами используют известняк фракции 40 мм - 120 мм. Когда требуется повышение производительности, используется известняк фракции меньше чем 40 мм, трёх шахтная печь. Маленькая фракция создает большее давление, и увеличивает давление внутри обжиговой печи. Когда используют три шахты, отходящие газы из горящей шахты распределяются в две шахты, таким образом, происходит сокращение газовой скорости и снижение давления приблизительно втрое. Техническое развитие и опыт позволили использовать обжиговых печей с двумя шахтами почти для всех условий и устранили потребность в обжиговых печах с тремя шахтами.

ППР-ПЕЧЬ работает под давлением, поэтому стальной корпус должен быть герметичен. Все открытия наверху обжиговой печи для загрузки известняка и пода шахт для выгрузки извести закрыты гидравлическими задвижками. Узкий диапазон размера камня идеален для любой обжиговой печи, но, из-за разрушительных свойств камня, широко изменяющийся размер по фракции - типичная ситуация в карьере. ППР-ПЕЧЬ может обжигать широкий диапазон по фракции из-за сложной системы загрузки. Их соотношение 4:1. Минимальный каменный размер для стандартного типа ППР-ПЕЧЬ - приблизительно 25 мм с максимальным размером 125 мм. При соответствующем оборудовании загрузки и подачи камня, максимальный размер - 180 мм.

КАЧЕСТВО ИЗВЕСТНЯКА

 

Что касается всех типов вертикальных шахтных печей использование твердых, высококачественных, чистых известняков - идеальное условие для безаварийной работы ППР - ПЕЧЕЙ. Однако, вследствие того, что шахты ППР - ПЕЧИ - фактически труба без любых устройств, которые могли затруднять свободный поток известняка и извести, движение материала - медленное и однородное истирание. Это означает, что, и мягкий известняк может быть обожжен в ППР - ПЕЧИ.

Высококачественный известняк и доломит с последовательными химическими свойствами часто не доступны или недостаточны. Изменение содержания карбонатов и примесей может привести к пережогу при производстве в ППР - печи.

ОСТАТОЧНЫЙ СО2

ППР - ПЕЧЬ позволяет производить известь и доломит известь с остаточными С02 0.5 %, в некоторых случаях даже ниже. Сталелитейная промышленность, самый большой потребитель извести и доломит извести, вообще просит об остаточном содержании С02 меньше чем 2 %.

РЕАКЦИОННАЯ СПОСОБНОСТЬ

 

Параллельный поток материала и газов сгорания в течение процесса обжига - идеальное условие производства высоко реактивной извести и доломит извести. Для специального производства пористого бетона, требуется известь со средней или низкой реакционной способностью. Приспосабливая операционные параметры, отношения избытка воздуха и входа теплоты, средняя негашеная известь может быть произведена в ППР - ПЕЧИ с адекватным качеством сырого камня. Производство твердой негашеной извести, однако, не возможном в этом типе обжиговой печи.

ППР-ПЕЧЬ имеет самую высокую эффективность всех современных обжиговых печей извести. КПД составляет 85%. Типичное потребление тепла находится в диапазоне от 3350 до 3600 кДж(от 800 до 860 килокалорий) на кг в зависимости от химического анализа и размера зерна камня и типа топлива. Срок службы футеровки обжиговой печи; идеальный диапазон - 2:1, но возможно и большее. От 3 до 4 лет зона переходного канала, от 6 до 8 лет зона горения и подогрева шихты, от 9 до 12 лет, зона охлаждения извести.

Износ футеровки - меньше чем 0.3 кг на тонну произведенной извести. Первые ППР - ПЕЧИ были построены больше чем 35 лет назад и все еще работают. Несмотря на огромное техническое развитие, основной и уникальный принцип ППР - ОБЖИГОВАЯ ПЕЧЬ остаётся неизменным. Фактически тепловая эффективность этого типа обжиговой печи не может быть улучшена.

Наиболее важные факторы, которые делают модернизацию Обжиговой печи, желательной и интересной:

• Проблемы Окружающей среды

• Усовершенствование технологии ППР - печи

• Увеличение срока службы и безопасность производства

• Улучшение качества

Узкий диапазон размера зерна камня желателен в работе шахтной печи. Для использования мелкой фракции в производстве разработали так называемый метод " Система загрузки Бутерброда " для ППР - ПЕЧИ. Последовательная загрузка камня в слоях различного размера уменьшает давление в сравнении с загрузкой смеси из двух каменных фракций, В то же самое время качество продукта обжига улучшено. ППР - ОБЖИГОВЫЕ ПЕЧИ были построены суточной производительностью от 100 до 600 т продукта обжига. Обжиговые печи могут использоваться от 50 % до 100 % их номинальной мощности.

Объём воздуха

 

ОБЪЁМ ВОЗДУХА подразделяется на объём ВОЗДУХА НА ГОРЕНИЕ (иначе называемого первичным или верхним воздухом) и объём ВОЗДУХА НА ОХЛАЖДЕНИЕ (иначе называемого вторичным или нижним воздухом).

Воздух на горение и на охлаждение нагнетается воздуходувками. Регулировка объёма воздуха осуществляется при помощи регулировочных двигателей, Для каждой печи установлены воздуходувки со следующими приводами: 1. Воздуходувки воздуха на горение.

Воздуходувки переменного тока

тип НЯ 52 мощность 9600 м3/с разница давления 400 обороты 1350 об/мин привод асинхронным двигателем с пускателем тип 1АО 315 5- 4; 160 кВт; 380В; 1473 об/мин.

воздуходувка с регулирующим двигателем, постоянного тока

тип НК52

мощность 9600 м/с

разница давления 400

обороты двигателя от 980 до 2550 об/мин

обороты воздуходувки макс. 1350 об/мин.

привод, регулируемый двигателем постоянного тока

тип ЗНК 14 А1; 980 об/мин, (минимум); 2550 об/ мин.(максимум); 160 кВт, 440 В,

включая охлаждение.

2. Воздуходувки воздуха на охлаждение

Воздуходувки переменного тока тип HR 52мощность 9600 мЗ/с разница давления 400мбар обороты 1350 об/мин привод асинхронным двигателем с пускателем ТШ1А03153-4; 160 кВт; 380В; 1473 об/мин.

воздуходувка с регулирующим двигателем, постоянного тока

тип НК52 мощность 9600 м/с разница давления 400 мбар обороты двигателя от 980 до 2550 об/мин обороты воздуходувки макс. 1350 об/мин, привод, регулируемый двигателем постоянного тока

тип 8НК. 14 А1; 980 об/мин, (минимум); 2550 об/ мин. (максимум); 160 кВт, 440 В, включая охлаждение.

3. Воздуходувки воздуха на охлаждение стержневых горелок

воздуходувка

тип НИ 2 мощность 1560м/с разница давления 70мбар обороты 2950 об/мин привод асинхронным электродвигателем тип F 250 МО2; 2950 об/мин; 55 кВт,380 В.

4. Резервные воздуходувки для двух шахтных печей воздуха на горение, на охлаждение и на охлаждение стержневых горелок являются общими для обеих печей, разделённых шиберными задвижками.

ГАЗ

 

Технические параметры

Топливо нефтяной природный газ с теплотворной способностью 33,94 МДж/Нм3, образующий с воздухом взрывчатую смесь при концентрации порядка 5 - 15% (по объему).

избыточное давление в газопроводе подачи газа к печам - 0,35МПа Температура газа 20°С

Расход газа

Для покрытия технологического расхода тепла в каждой двухшахтной печи при стабильной эксплуатации и с учетом номинальной производительности печи необходимо: средний расход газа 2.750 Нм /час для обеих печей 5.500 НмЗ/час

Для «холодного запуска» каждой печи устанавливается обогревательная горелка со встроенной растопочной («управляющей») горелкой, оснащенная комплектом автоматики для безопасной эксплуатации и программой растопки. Расход каждой горелки составляет:

растопочная горелка

давление газа на подаче 5 -15кПа

расход газа 17 м3/час (макс.)

обогревательная горелка

давление газа на подаче

0,35 МПа расход газа

200 нмэ/час

ТОПЛИВО

 

Природный газ с теплотворной способностью 33940кДж/м. Избыточное давление в трубопроводе - 0,35мРа. Температура газа 20°С. Для покрытия технологического тепла, для одной двухшахтной печи при номинальной производительности необходимо:

- Средний расход газа до 2750 нм3

- Для двух печей до 5500 нм3

Для "холодного пуска" в печь устанавливается нагревательная горелка совместно с зажигательней горелкой.

ЗАЖИГАТЕЛЬНАЯ ГОРЕЛКА

Давление - 5 -15 кРа; Расход газа - 17.м/ч

НАГРЕВАТЕЛЬНАЯ ГОРЕЛКА

Давление - 0,35 мРа; Расход газа- 20нм3

ЭКСПЛУАТАЦИЯ ПЕЧИ

 

Если при запуске нового времени обжига давление воздуха на горение, давление воздуха на охлаждение и давление в переходном канале отличаются от параметров предыдущего цикла -это указывает на не герметичность клапанов в верхней части печи.

Если в одинаковом режиме работы все параметры давления имеют тенденцию к увеличению, то это указывает на загрязненность каналов.

Другой причиной повышения или падения давления является изменение фракции. Чем больше мелкой фракции или чем больше разница между самой мелкой и самой крупной фракцией, тем выше давление. При появлении разности давления в канале и воздуха, как на охлаждение, так и на горение между шахтами 1 и 2, но не очень значительно, то печь должна работать в течение 30 загрузок без остановок.

В течении этого времени разница в давлении обычно падает. Значит, в зоне переходного канала образовалось налипание, которое теперь уходит.

Если изменений не происходит, то нужно поработать 2-3 цикла без подачи газа, для успокоения печи. При появлении разницы н чначениях давления воздуха на горение и в переходном канале между шахтами и в незначительной степени воздуха на охлаждение, необходимо уменьшить объем подачи газа. Существует опасность образования сводов и сваров. Через 2-4 цикла с меньшим количеством газа можно снова работать в нормальном режиме. Разность в показаниях термопары и ардометра может составлять до 120 °С.При показаниях температуры на ардометре 1150-1200 °C необходимо отработать один цикл без газа. В случае наблюдения тенденции к постоянному увеличению температуры следует уменьшить подачу газа на 2-3 нмЗ/час. Если давление в переходном канале имеет значение 22-25 кПа необходимо отработать один цикл без газа. При уменьшении времени цикла и увеличении производительности возрастает запыленность переходного канала. В зависимости от срока приостановки печи скачивание производят в ручном режиме при необходимости производят досыпание шихты. При увеличении количества нижнего воздуха растет температура отходящих газов. При низкой температуре в переходном канале (850 -900 С) необходимо уменьшить подачу воздуха на горение. Пря дальнейшем падении температуры, необходимо уменьшить количество загружаемого материала. В случае обрушения шихты в шахте, работающей в прямотоке необходимо отсечь подачу топлива. Если процесс обрушения носит частый характер по ходу цикла, следует провести 2-3 цикла без подачи газа. При вводе печи в эксплуатацию добиваются получения извести более низкого качества (88 -90,6% СаО), чтобы знать какое количество ккал/кг СаО необходимо для получения извести с более высокими показателями СаО. При обнаружении спеченных кусков на выходе из печи и на выгрузочных столах продувают шахты 1-3 цикла, отсекают 1/6 или 1/2 часть заданного количества топлива от 2 до 6 раз в сутки.


ЭЛЕКТРОБЕЗОПАСНОСТЬ

Воздействие электрического тока на организм человека зависит от многих факторов: напряжения и силы тока, частоты и продолжительности воздействия тока, состояния кожи (сухая, влажная), некоторых болезней сердца, характера прикосновения (кратковременное — точечное или плотное), от пола, на котором стоит человек (металлический, бетонный, деревянный). Состояние опьянения сильно понижает сопротивление организма электрическому току.

Поражения электрическим током могут произойти как при высоком, так и при низком напряжениях. Статистика показывает, что больше всего несчастных случаев происходит при напряжениях 380 и 220 В, т. е. в таких установках, где чаще всего работают люди, не всегда имеющие достаточную специальную подготовку.

Постоянный ток оказывает менее сильное воздействие, чем перемен­ный ток той же силы. Принято считать, на основании экспериментальных данных, безопасной для человека силу тока: переменного до 10 мА, постоянного до 50 мА. При воздействии более высоких токов происходят непроизвольные судорожные сокращения мышц; человек не может самостоятельно оторвать руку от токоведущей части и, если ему не будет оказана помощь, происходит паралич дыхания и сердца.

Опасно не только непосредственное прикосновение к токоведущим частям. Часто причиной поражения электрическим током является повреждение изоляции токоприемников. В этом случае металлический корпус токоприемника находится в контакте с оголенными токоведущими частями и, следовательно, прикосновение к металлическому корпусу может стать таким же опасным, как и прикосновение к оголенным токоведущим частям.

К персоналу, обслуживающему электроустановки, предъявляют специальные требования. При приеме на работу по эксплуатации электроустановок поступающий обязательно проходит медицинский осмотр, при котором проверяют его здоровье, отсутствие болезней, увечий и дефектов, при наличии которых работа по эксплуатации электроустановок противопоказана.

В процессе работы проводят повторные медицинские осмотры не реже 1 раза в 2 года. Для некоторых установок, связанных с повышенной вредностью (например, эксплуатация ртутных выпрямителей, работы верхолазов на высоте, высокочастотные установки), повторные медицинские осмотры осуществляют 1 раз в 6—12 мес.

После медицинского осмотра поступающий на работу проходит вводный (общий) инструктаж по технике безопасности и проверку в квалификационной комиссии, присваивающей квалификационную группу соответственно его знаниям правил техники безопасности и опыту работы и выдающей удостоверение на право работы в данной электроустановке.

Установлено пять квалификационных групп.

I группа. В эту группу входят лица, связанные с обслуживанием электроустановок, но не прошедшие проверку знаний правил техники безопасности. Они не имеют электротехнических знаний и отчетливых представлений об опасности поражения электрическим током и мерах предосторожности. Работников этой группы инструктируют при допуске к работам. Работают они под непрерывным наблюдением лиц, имеющих квалификационную группу II и выше.

II группа. К ней относят электромонтеров, электрослесарей, крановщиков, электросварщиков, практикантов институтов, техникумов и технических училищ и практиков-электриков. Чтобы получить квалификацию II группы, необходимо иметь стаж работы на данной установке не менее 1 мес. (практикантам стаж «е требуется), определенный минимум электротехнических знаний, отчетливое представление об опасности поражения электрическим током и основных мерах предосторожности при эксплуатации электроустановок.

III группа. К ней относят электромонтеров и электрослесарей, дежурный и оперативный персонал, наладчиков, связистов и практикантов институтов и техникумов, начинающих инженеров и техников. Для получения квалификации III группы работник должен иметь не менее 6 мес. общего стажа работы (окончившие технические и ремесленные училища — не менее 3 мес., практиканты институтов и техникумов, начинающие инженеры и техники — не менее 1 мес. стажа по II группе).

Кроме электротехнических знаний и отчетливого представления об опасности поражения электрическим током, мерах предосторожности и оказании первой помощи работники III группы должны знать те разделы Правил технической эксплуатации и безопасности обслуживания (ПТЭБО), которые относятся к их обязанностям, и уметь вести надзор за работами в электроустановках.

IV группа. Для получения IV группы работник должен иметь стаж работы «е менее 1 года (окончившие технические и ремесленные училища—не менее 6 мес., начинающие инженеры и техники — не менее 2 мес.).

Кроме знаний, необходимых для III группы, для получения IV группы надо знать Правила технической эксплуатации и безопасности обслуживания, уметь свободно разбираться во всех элементах данной электроустановки, а также организовывать безопасное ведение работ в электроустановках.

V группа. Ее присваивают мастерам, техникам и инженерам с законченным •средним или высшим образованием и со стажем работы не менее 6 мес., а также монтерам, мастерам и практикам, занимающим инженерно-технические должности при наличии стажа не менее 5 лет. Для окончивших технические и ремесленные училища достаточен стаж 3 года.

Для получения квалификации V группы работник должен не только иметь знания, необходимые для IV группы, и твердо знать Правила технической эксплуатации и безопасности, но и иметь ясное представление о том, чем вызваны требования каждого пункта правил, уметь организовать безопасное производство комплекса работ и вести надзор за ними при любом напряжении.

Расчётный лист

Объёмный расход газа, приведенный к нормальному состоянию (20°С 101325Па) QHOM = 4200 м3/ч.

1. Данные для расчета

А - Сужающее устройство

1. Тип – диафрагма

2. Материал сужающего устройства – сталь 12Х18Н9Т

3. Поправочный коэффициент на тепловое расширение Кt = 1,0047

Б – Трубопровод

1. Поправочный коэффициент на тепловое расширение Кt = 1,0047

2. Внутренний диаметр D=700мм

В – Измеряемая среда

Название газа – природно-доменный газ

Расчетные расходы – максимальный Qnp=4000м3/ч Средний Qср= 2300м3/ч

Минимальный Qmm=1500м3

Средняя абсолютная температура Т=290К Среднее абсолютное давление ρ=110000 Па Расчетная допустимая потеря давления Рпд=5500Па

Плотность сухого газа в нормальном состоянии ρн=0,8362 кг/м3

Максимально возможное давление водяного пара при температуре t=25°C

Относительная влажность в долях единицы φ=0,89

Относительная влажность в рабочем состоянии φ=0,95

Коэффициент сжимаемости К=1

Промежуточная величина для определения ζ=387

Плотность сухой части газа в рабочем состоянии рс г=0,950кг/м3

Плотность влажного газа в рабочем состоянии ρ=0,970кг/м3

Показатель адиабаты - 1,355

Динамическая вязкость µ=1,241*105Па/с

Число Рейнольдса Re=304664,2

Среднее число Рейнольдса Reср=201078,37

 

Лист исходных данных

 

Общие данные

Среднее барометрическое давление местности Рб=101325Па

Трубопровод

1. Внутренний диметр D20=700мм

2. Материал – сталь 12Х18Н9Т

Измеряемая среда

1. Наименование: газ

2. Часовой расход:

мах Qмmax=3200м3

средний Qмср= 2300м3

мин: Qм мин= 1500м3

3. Средняя температура t=32°С

4. Среднее избыточное давление Ри=5,0*10¯³мПа

5. Допустимые потери давления Рпд=0,5кПа

 

Расчёт сужающего устройства

 

Среднее барометрическое давление местности (100000 – 101325)Па

 

Рб=101325Па

 

Материал сужающего устройства и участков трубопровода, между которыми устанавливается сужающее устройство для воды, газа, пара и горячего воздуха: сталь 12Х18Н9Т.

Ø трубопровода при 20°С D20 выбираем по допустимой скорости вещества в трубопроводе.

Скорость пара в рабочих условиях V=10м/с. По выбранной скорости находим ø трубопровода

Где: Qmax – максимальный расход вещества в рабочих условиях

337,1мм

Найденную величину округляем до стандартного значения D=400мм

Расчетный мах расход Qпр, являющийся верхним пределом измерения дифманометра, выбирают из стандартного ряда (1;1,25;1,6;2;2,5;3,2;4;5;6,3;8) 10ⁿ.

В данном случае:

Qпр=4000м3/ч

Средний расход составляет:

Qмср=(1/2-2/3) Qм np

Qм ср=2/3*4000=2666,6 м3/ч

Минимальный расход:

Qм мин.=(1/4-1/3) Qм np

Qм мин=1/4*4000=1000м3/ч

По условию температура пара t=32°С. В интервале температур (0°С - 450°С) коэффициент на тепловое расширение равен:

Kt=1+£t*(t-20),

Где £t=(1.38-1.74)*10¯⁶

Kt=1+1.56*10¯⁶*(320-20)=1.00468

Средняя абсолютная температура:

Т=t=273

T=303K

Среднее абсолютное давление:

Ра=Ри+Рб

Где Ри – избыточное давление,

Рб – барометрическое давление.

Ра=5000000+101325=5101325 Па.

Расчетная допустимая потеря давления:

Рпд=Рпд'*(Qм пр/Qmax)²

 

Где Рпд' – допустимая потеря давления;

Рпд=4500*(4000/3200)=5625Па

Плотность газа в нормальных условиях находим из таблицы

Рн=0.8362кг/м3.

Показатель адиабаты для газа

χ=0.8362-0.0001*t

Где t – температура пара

Χ=0.8227

Динамическую вязкость газа нахожу по таблице:

µ=1.241*10¯⁵Па*с. Кг/м3

число Рейнольдса находим по формуле:

 

Re=0.354*Qм пр/D*µ

 

Где D – диаметр трубопровода;

Qм пр – максимальный расход;

µ- динамическая вязкость.

Re=0.354*3200/300*1.241*10¯⁵=4,2

Среднее число Рейнольдса:

 

Reср= Re*Qм ср/Qм пр

 

Где Qм


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.213 с.