Тема 11. Развитие живого на Земле. — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Тема 11. Развитие живого на Земле.

2022-10-27 32
Тема 11. Развитие живого на Земле. 0.00 из 5.00 0 оценок
Заказать работу

Понятие развития. Изменчивость и устойчивость органической жизни. Эволюция. Информационная концепция развития. Взаимосвязь структуры и функции в живой природе. Изучение динамики структур. Происхождение жизни на Земле. Концепции приоисхождения жизни. Теория А.И. Опарина. Альтернативные теории происхождения жизни.

Понятие развития

Развитие - это необратимое, направленное, закономерное изменение материи и сознания, их универсальное свойство; в результате развития возникает новое качественное состояние объекта - его состава или структуры. Развитие - всеобщий принцип объяснения природы, общества и познания, как исторически протекающих событий.

Различают две формы развития, между которыми существует диалектическая связь: эволюционную, связанную с постепенными количественными изменениями объекта (эволюция), и революционную, характеризующуюся качественными изменениями в структуре объекта (революция). Выделяют прогрессивную, восходящую линию развития (прогресс) и регрессивную, нисходящую линию (регресс). Прогресс - направленное развитие, для которого характерен переход от низшего к высшему, от менее совершенного к более совершенному.

Развитие, как бы повторяет уже пройденные ступени, но повторяет их иначе, на более высокой базе, так сказать, по спирали, а не по прямой линии; развитие скачкообразное, катастрофическое, революционное превращение количества в качество; внутренние импульсы к развитию, даваемые противоречием, сталкиванием различных сил и тенденций, действуют на данное тело или в пределах данного явления; непрерывная связь всех сторон каждого явления, связь, дающая единый, закономерный мировой процесс движения, - таковы некоторые черты диалектики, как более содержательного учения о развитии (А.К.Айламазян, Е.В.Стась).

Основной особенностью, отличающей развитие от других динамических процессов, например, от процесса роста, является качественное изменение во времени переменных, характеризующих состояние развивающейся системы (для процесса роста обычно говорят лишь о количественном изменении этих переменных). Причем качественное изменение носит скачкообразный характер. Существует точка зрения, что движение - более общий момент, а развитие - частный случай движения, т.е. развитие не является атрибутом материи. Другая точка зрения настаивает на атрибутивном характере развития. Решение вопроса об атрибутивном характере развития связано с тем содержанием, которое вкладывается в понятие "развитие". Обычно выделяют три подхода: - развитие как круговорот; - развитие как необратимое качественное изменение; - развитие как бесконечное движение от низшего к высшему.

Эти подходы справедливы, когда речь идет не о материи вообще, а о каком-либо материальном образовании. Одной из фундаментальных черт современного естествознания и вместе с тем направлений его диалектизации является все более глубокое и органичное проникновение в систему наук о природе эволюционных идей, которые неразрывно связаны с концепцией иерархии качественно своеобразных структурных уровней материальной организации, выступающих как ступени, этапы эволюции природных объектов. Если всего лишь несколько десятилетий назад исследования эволюционных процессов в различных областях естествознания были довольно слабо связаны между собой, то сейчас положение изменилось радикальным образом: выявляются контуры единого (в многообразии своих конкретных проявлений) процесса эволюции охваченных исследованиями областей природы.

Эволюция

Термин "эволюция" имеет несколько значений, однако чаще всего он используется как синоним развития. Так, И.И.Шмальгаузен определяет эволюцию как закономерный процесс исторического развития организма. Иногда термин "эволюция" используют в более узком смысле, понимая ее как одну из форм развития, которая противопоставляется революции. Эволюция и революция рассматриваются как взаимообусловленные стороны развития, выступая против абсолютизации какой-либо из них. В любых процессах развития естественно наличие чередующихся участков: эволюционных и революционных.

Эволюция в широком смысле - представление об изменениях в природе и в обществе, их направленности, порядке, закономерностях; определенное состояние какой-либо системы рассматривается как результат более или менее длительных изменений ее предшествовавшего состояния; в более узком смысле - представление о медленном постепенном количественном изменении. Эволюция в биологии - это необратимое историческое развитие живой природы. Определяется изменчивостью, наследственностью и естественным отбором организмов. Сопровождается приспособлением их к условиям существования, образованием видов, преобразованием биогеоценозов и биосферы в целом.

Изменчивость и устойчивость органической жизни.

Эволюционная идея зародилась и развилась в XIX в. в качестве оппозиции представлению о неизменности мира, но своего апогея она достигла в нашем столетии, и ее принятие можно считать достижением XX в.

В прошлом веке идея неизменчивости органического мира нашла свое яркое выражение в лице Ж.Кювье. Кювье исходил из своей теории постоянства и неизменности видов и ее двух основных принципов - принципа корреляций и принципа условий существования. Неизменность вида входила, согласно Кювье, в организованность, упорядоченность природы. Его теорию катастроф, или смену фаун и флор, в данной органической области можно назвать теорией эволюции при неизменности видов, теорией нарушения гармонии природы только в результате катастрофических событий общеземного масштаба. Теория типов, теория гармонии природы и теория неизменности видов прекрасно согласовались друг с другом и составляли фундамент естествознания первой половины XIX в

Ч.Дарвин впервые обосновал эволюцию и убедил своих современников именно потому, что он сочетал признание реальности вида с научной теорией его изменяемости.

В XX в. идею гармонии природы сменила идея эволюции. Принцип гармонии природы, теория типов и представление об устойчивости вида отодвинулись в сознании людей на задний план, а многим казались опровергнутыми. С течением времени, однако, полное обоснование эволюционной идеи породило свою противоположность. В науке XX в. вновь возродилась идея устойчивости. И с тем же благородным рвением, с каким человеческая мысль разрушала теорию типов и теорию неизменности видов, она устремилась на поиски механизмов поддержания устойчивости.

В.И.Вернадский сумел раскрыть на уровне биосферы в целом взаимодействие эволюционного процесса и идеи устойчивости живой природы. В 1928 г. В.И.Вернадский писал: "В геохимическом аспекте, входя как часть в мало изменяющуюся, колеблющуюся около неизменного среднего состояния биосферу, жизнь, взятая как целое, представляется устойчивой и неизменной в геологическом времени. В сложной организованности биосферы происходили в пределах живого вещества только перегруппировки химических элементов, а не коренные изменения их состава и количества - перегруппировки, не отражавшиеся на постоянстве и неизменности геологических - в данном случае геохимических процессов, в которых эти живые вещества принимали участие. Устойчивость видовых форм в течение миллионов лет, миллионов поколений, может, даже составляет самую характерную черту живых форм".

По сложившемуся общему мнению, вершиной творчества Вернадского является учение о биосфере и об эволюционном переходе ее под влиянием человеческого разума в новое состояние - ноосферу: "Масса живого вещества, его энергия и степень организованности в геологической истории Земли непрерывно эволюционировали, никогда не возвращаясь в прежнее состояние. Преобразования в поверхностной оболочке планеты под влиянием деятельности человека стали естественным этапом этой эволюции. Вся биосфера, изменившись коренным образом, должна перейти в новое качественное состояние, сферу действия человеческого разума".

В дальнейшем, переводя теорию Дарвина на язык кибернетики, И.И.Шмальгаузен показал, что само преобразование органических форм закономерно осуществляется в рамках относительно стабильного механизма, лежащего на биогеоценотическом уровне организации жизни и действующего по статистическому принципу. Это и есть высший синтез идеи эволюции органических форм с идеей устойчивости и идеей постоянства геохимической функции жизни в биосфере. Так воедино оказались слитыми и вместе с тем поднятыми на новый современный уровень концепции Кювье, Дарвина, Вернадского.

Практика современной научно-исследовательской деятельности выдвигает новые задачи в понимании эволюционных процессов, поэтому формируется некий слой знаний, не имеющий статуса отдельной науки, но составляющий важный компонент культуры мышления современного ученого. Этот слой знания является как бы промежуточным между философией, диалектикой как общей теорией развития и конкретно-научными эволюционными концепциями, отражающими специфические закономерности эволюции живых организмов, химических систем, земной коры, планет и звезд.

Можно, видимо, говорить о нескольких взаимосвязанных и соподчиненных понятиях эволюции в рамках естественнонаучной картины мира. Наиболее общим из них и применимым практически в пределах всей доступной исследованию области природы, неживой и живой, следует считать понятие эволюции как необратимого изменения структуры природных объектов.

Информационная концепция развития.

Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура отражает уровень организации материи.

Изменение структуры сложной системы в процессе ее взаимодействия с окружающей средой - это проявление свойства открытости как роста возможностей выхода к новому. С другой стороны, изменение структуры сложной системы обеспечивает расширение жизненных условий, связанное с усложнением организации и повышением жизнедеятельности, т.е. приобретением приспособлений более общего значения, позволяющих установить связи с новыми сторонами внешней среды.

Взаимосвязь структуры и функции в живой природе.

Рассматривая структуру и функцию, предпочтение отдают первичности в изменении функции. Однако наиболее правильно рассматривать диалектическую взаимосвязь и взаимообусловленность их изменений в процессе эволюции (изменение среды требует изменения функции; а она, в свою очередь, влияет на изменение структуры).

Растительное и животное царство дает множество убедительных примеров такой взаимообусловленности. Так, выход растений на сушу ознаменовался приобретением комплекса морфофизиологических новшеств, защитных покровов, проводящей системы, дифференциацией тела на органы и т.д. Благодаря этим изменениям, прежде всего, было достигнуто уменьшение потери воды от испарения и усиление ее движения по растению. Здесь трудно сказать, что чему предшествовало, морфологические или физиологические изменения. В то же время очевидно, что "заказ" на уменьшение отрицательных последствий недостатка воды повлек за собой отбор растений на развитие защитных покровов и проводящей системы в наземных условиях.

В данном случае речь идет о процессе самоорганизации, где можно выделить причину и следствие, указать связи их с внешней средой: внешняя среда изменяет функцию, функция изменяет структуру. По мере усложнения внутренней организации функциональные возможности организмов усиливаются. Функциональные особенности изменяются несколько быстрее, чем структурные. Одним из примеров влияния функциональных преобразований на структуру растения могут служить листья и преобразование структуры черешка изменением его функции: у листа после длительной самостоятельной жизни в укорененном состоянии перестраиваются исторически сложившиеся функции; при этом черенок приобретает функции стебля, усиливается его проводящая и механическая активность.

Структура и функция - неотъемлемые свойства живой природы, они связаны в онто- и филогенезе. Любой орган обладает множественностью функций. Если из множеств функций, например, корня растений (проведение веществ или их запасение, образование придаточных почек, прикрепление, синтез и т.п.) одна окажется главной, то строение его в филогенезе изменится сообразно новой функции. С другой стороны, проявление любой функции растений одного и того же вида меняется количественно, причем различия часто наследственно обусловлены. На этой основе может происходить отбор по степени выражения данного свойства. Например, у одних растений по такому принципу усилилась присасывающая функция корней (паразиты), у других - опорные функции.

Именно в структуре биологически активного вещества эволюция закодировала его способность выполнять строго определенную биологическую функцию.

Изучение динамики структур

Для изучения процесса развития необходимо знать характер изменения структур во времени, их динамические параметры. Надо также уметь вскрывать закономерности взаимосвязи между структурой и проявляемой системой функцией.

До недавнего времени естествознание и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета коллективных эффектов и исследования процессов образования устойчивых структур и самоорганизации. В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией.

Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов.

Философско-методологический анализ проблем глобального эволюционизма неизбежно приводит к постановке фундаментального вопроса: существуют ли законы эволюционного процесса, представляющие собой определенную конкретизацию диалектической концепций развития и в то же время общие для всех структурных уровней природной действительности? Хотя эта проблема в настоящее время еще далека от решения, все же есть определенные основания допускать существование законов и закономерностей прогрессивного развития в природе, охватывающих все основные этапы - космогонический, геологический, биологический, наряду со специфическими законами и закономерностями, присущими каждому из них.

Это могут быть, во-первых, частнонаучные законы или закономерности, которые возможно экстраполировать на целостные процессы эволюции природной действительности (скажем, закон возрастания энтропии или определенные "биоаналогии", имеющие достаточно общее значение).

Во-вторых, идея глобального эволюционизма получает поддержку со стороны общенаучных концепций. Так, начавшаяся в последние годы разработка генетических аспектов общей теории систем позволяет предполагать, что некоторые сформулированные в ее рамках закономерности могут обладать весьма широкой сферой применимости, в частности, охватывать определенные черты эволюции всей исследуемой природной действительности. Изучению процессов эволюции неживой и живой природы, а также прогресса общества может содействовать дальнейшая разработка концепции самоорганизации.

Наконец, в-третьих, возможно предположить, что существуют такие типы достаточно общих эволюционных законов и закономерностей, которые будут выявлены на основе комплексного анализа процессов развития в масштабах всей системы наук о природе. Пока, конечно, преждевременно обсуждать вопрос, будут ли законы, сформулированные первоначально в рамках общенаучной картины мира, включаться далее в такую форму организации теоретического знания, какой является теория (система теорий), или в иную, до сих пор мало исследованную форму междисциплинарного и общенаучного знания - учение (примером которой может служить учение В.И.Вернадского о биосфере), или же входить и в состав систем теорий, и в состав учений разной степени общности. Во всяком случае, очевидно, что потребности как теоретического, так и мировоззренческого плана будут стимулировать дальнейшее обоснование идеи глобального эволюционизма.

Информационная концепция развития систем любой природы, в основе которой лежат категории информатики - информация, энтропия, информационные процессы и их связь с эволюционными процессами, по-видимому, может рассматриваться как одна из естественнонаучных конкретизации общей теории развития.

Происхождение жизни на Земле.

Сущность понимания жизни уходят своими корнями в вечный философский спор о материи и сознании (духе) и даже превосходят его, так как жизнь есть всеединство, и рождается лишь во всеединстве первого и второго. В различные исторические периоды существовали разнообразные трактовки жизни, абсолютизирующие те или иные особенности живого и жизни вообще,– подходы от механистического и виталистического до кибернетического и информационного.

Концепции приоисхождения жизни

В целом можно выделить шесть концепций, объясняющих происхождение жизни:

· креационизм – сотворение жизни Богом;

· концепция панспермии – внесение жизни из космоса;

· концепция стационарного состояния – идея вечности жизни;

· концепция многократного самозарождения живого из неживого;

· случайное однократное зарождение жизни;

· закономерное происхождение жизни путем биохимической эволюции.

С точки зрения экодинамической модели развития Земли, жизнь – это временная (в масштабах Вселенной) форма обмена веществ и энергии сглаживающая физико-химические противоречия эволюции внутренних, внешних и общепланетарных геосфер планеты. В этом смысле, возможно жизнь на других планетах существует совершенно в другом виде: жизнь при сверхвысоких температурах (плазма), аммиачная жизнь, электромагнитная жизнь и т.д. Для нас вышеприведенное определение жизни важно и приемлемо, так как позволяет понять, какие абиотические (небиологические, физико-химические) условия позволили появиться жизни на планете Земля. Прежде всего, отметим уникальные особенности Земли: расположение относительно Солнца, размеры, наличие сильного магнитного поля.

Ранняя Земля (начало процесса образования жизни – примерно 4,6 млрд. лет назад) была относительно холодным телом с разреженной восстановительной атмосферой, состоящей из смеси метана, аммиака, паров воды при общем давлении не более 10 мм рт. ст. Температура поверхности не превышала минус 50°С, то есть литосфера была покрыта слоем льда. Поток солнечного излучения, особенно его ультрафиолетовая часть, а также космические излучения приводили к ионизации атмосферы, и она находилась в так называемом состоянии холодной плазмы. В этом состоянии сосуществуют ионизированные атомы, ионы и электроны, однако их энергии достаточно малы. Подобную холодную плазму мы наблюдаем в газоразрядных трубках, лампах дневного света, бактерицидных лампах. Именно этот ионизированный газ и был основным источником энергии для начала химической эволюции органического вещества.

Радиоактивный разогрев недр Земли пробудил тектоническую деятельность. При этом очень важно, что масса планеты была не слишком большой, так как энергия атомного распада природных радиоактивных веществ могла привести к перегреву планеты или радиоактивному загрязнению среды, не совместимому с жизнью. Выделение газов уплотнило атмосферу, которая удерживалась Землей, что не могло бы случится, если бы она была слишком маленькой. Ее нижние слои перестали быть доступными для ионизирующего ультрафиолетового излучения и высокоэнергетических космических частиц. Повысилась температура поверхности планеты и образовались первичные водоемы.

В дальнейшем термический режим за счет взаимодействия геосферных оболочек, почти кругового движения Земли вокруг Солнца и относительно равномерного излучения Солнца стабилизировался в благоприятном диапазоне для физико-химической эволюционной самоорганизации поверхностного вещества планеты. В частности, это позволило воде как наиболее универсальному растворителю существовать в жидкофазном состоянии, что обеспечивало проявление ее главных свойств. Наличие воды в двухфазном состоянии (жидкая и парообразная) привело к тому, что разность электрических потенциалов между поверхностью Земли и облаками была такова, что молнии по энергетике превышали современные в тысячи раз. В дополнении к этому наблюдались интенсивные электромагнитные явления, вызванные взаимодействием геосферных оболочек (в основном ядра и мантии). Все эти и некоторые другие абиотические факторы среды привели к так называемому абиогенному синтезу. Теория происхождения первых живых существ из неживой материи была выдвинута Порлюгером, Дж. Холдейном, Р. Бейтнером, но особенно детально она разработана советским биохимиком академиком А. И. Опариным в его книге "Возникновение жизни" (1936).

Теория А.И. Опарина.

С повышением молекулярного веса отдельные органические вещества концентрировались у дна водоемов и на поверхности раздела других сред. В условиях повышенной концентрации процессы синтеза могли преобладать над распадом, что привело к постоянному существованию первичных полимеров, например, полипептидов и полинуклеотидов. Концентрация органических соединений постоянно увеличивалась, и в конце концов воды океана стали "бульоном", преимущественно из макромолекул на основе углеводородных цепочек. Органические молекулы имеют большую молекулярную массу и сложную пространственную конфигурацию. Они окружены водной оболочкой и объединяются, образуя высокомолекулярные комплексы – коацерваты, или коацерватные капли (А. И. Опарин). Например, как показали эксперименты, в процессе размораживания липиды претерпевают самосборку, образуя в водоеме стабильные микросферы диаметром от 10 до 50 мкм (коацерваты).

Крупные коацерваты обладали способностью поглощать различные, более мелкие вещества, растворенные в водах первичного океана (протопитание). В результате этого внутреннее строение коацервата изменялось, что вело или к его распаду по достижении критической массы, или к накоплению веществ за счет образования устойчивых структур (например, белки линейного строения способны сворачиваться в клубок или глобулу). Это уже протоаналоги роста (усложнение структуры) и размножения (распад на части). Академик Б. С. Соколов по этому поводу сказал следующее: "Путь, который прошел органический мир от бактерии до нас с вами, более прост, чем путь, который связал сложные, но предбиологические молекулы с биологической эволюцией".

Следующий важный шаг предбиологической эволюции – объединение способности полинуклеотидов к самовоспроизведению с возможностью полипептидов ускорять течение химических реакций, так как удвоение молекул ДНК эффективнее осуществляется при участии белков, обладающих каталитической активностью. Однако стабильность "удачных" комбинаций аминокислот в полипептидах может обеспечиваться только при сохранении информации о них в нуклеиновых кислотах. Связь нуклеиновых кислот и белковых молекул в конце концов привела к возникновению генетического кода, т.е. такой организации молекул ДНК, в которой последовательность нуклеотидов стала служить информацией для построения конкретной последовательности аминокислот в белках.

Такая последовательность молекулярной эволюции поддерживается далеко не всеми. Дело в том, что для саморепродукции нуклеиновых кислот – основы генетического кода – необходимы ферментные белки, а для синтеза белков – нуклеиновые кислоты. Первенство происхождения тех или других отражено в концепциях голобиоза и генобиоза.

Дальнейшая прогрессивная эволюция предбиологических структур была возможна только при усложнении обменных процессов и пространственном разделении различных синтетических и энергетических процессов внутри коацервата. Более прочную изоляцию внутренней среды от внешних воздействий по сравнению с той, которую обеспечивала водная оболочка, могла осуществить лишь биологическая мембрана. Вокруг коацерватов, богатых органическими соединениями, возникли слои липидов, отделивших коацерваты от окружающей водной среды. В процессе эволюции липиды вошли в состав наружной мембраны, значительно повысившую жизнеспособность и устойчивость организмов. Появление мембраны, отделяющей содержимое коацервата от окружающей среды и обладающей способностью к избирательной проницаемости, предопределило направление дальнейшей химической эволюции по пути развития все более совершенных саморегулирующихся систем вплоть до возникновения первых клеток. По версии С. Н. Виноградского, уже на первых этапах жизни "первобытная биосфера изначально была представлена богатым функциональным разнообразием и наличием биоценозов".

Свойства первых живых организмов

Подводя итоги, отметим, что первичные организмы, возникшие на Земле более 4 млрд. лет назад, обладали следующими свойствами:

· они были гетеротрофными организмами, то есть питались готовыми органическими соединениями, накопленными на этапе космической эволюции Земли;

· они были прокариотами – организмами, лишенными оформленного ядра;

· они были анаэробными организмами, использующими в качестве источника энергии дрожжевое брожение;

· они появились в виде первичной биосферы, состоящей из биоценозов, включающих различные виды одноклеточных организмов;

· они долгое время существовали только в водах первичного океана.

Альтернативные теории происхождения жизни

Далеко не все согласны с подобной моделью появления жизни на Земле. Распространены и теории внеземного происхождения жизни (теории панспермии, стационарного состояния). Наиболее ярым сторонником этой идеи был В. И. Вернадский. Он отмечал космический характер жизни, веря в ее вечность и, возможно, даже считая ее первопричиной развития мира. Он ввел понятие "живого вещества", которое в отличие от косного всегда оптически активно. Именно "живое вещество" является носителем и создателем свободной энергии в таком масштабе, что она охватывает всю биосферу и определяет в основном всю ее историю. "Материя непрерывно перемешивается: одни ее части уходят в солнца, а другие выходят из них. Всякой капле вещества, где бы она ни находилась, неизбежно придет очередь жить",– писал К. Э. Циолковский. Космическое явление жизни в его теории постоянно распространяется и меняется, не ограничиваясь пределами Земли.

 

Вопросы к семинару 1:

1. Понятие развития в биологии.

2. Эволюционный и революционный пути развития живого.

3. Структура и функция живой материи.

4. Динамика структур живого.

Вопросы к семинару 2:

1. Теории происхождения жизни.

2. Происхождение жизни по А.Опарину.

3. Свойства первых живых организмов.

4. Теория панспермии.

5. Креационистская теория эволюции.

 

Дополнительная литература:

Воронцов Н.Н. Развитие эволюционных идей в биологии. М., 1999.

Тимофеев-Ресовский Н. В., Воронцов Н.Н., Яблоков А.В. Краткий очерк теории эволюции. М., 1977.

 

 


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.052 с.