Тема 3. Научная революция рубежа XIX – XX веков. — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Тема 3. Научная революция рубежа XIX – XX веков.

2022-10-27 31
Тема 3. Научная революция рубежа XIX – XX веков. 0.00 из 5.00 0 оценок
Заказать работу

Кризис механистической картины мира. От термодинамики к статистической физике: изучение необратимых систем. С. Карно, Р. Клаузиус, Л. Больцман. Статистическая термодинамика Дж. Гиббса. Развитие представлений о пространстве и времени. Философия Э. Маха и математические исследования В. Клиффорд. Теория электромагнитного поля. М. Фарадей, Д. Максвелл. Противоречия теории эфира. Открытие рентгеновских лучей, радиоактивности и структуры атома. Кризис в физике на рубеже веков.

 

Вторая половина XIX в. характеризуется высокими темпами развития всех сложившихся ранее и возникновением новых разделов физики. Особенно быстро развиваются теория теплоты и электродинамика. Теория теплоты разрабатывается в двух направлениях: совершенствование термодинамики, непосредственно связанной с теплотехникой, и развитие кинетической теории газов, которое привело к возникновению статистической физики. В области электродинамики важнейшим событием явилось создание теории электромагнитного поля. Характерная особенность физики этого периода - усиливающиеся противоречия между старыми механистическими методологическими установками и новым содержанием физической науки. Закон сохранения и превращения энергии, понятия теории электромагнитного поля, кинетической теории теплоты для своей интерпретации нуждались в новой методологии. Но физики в основном продолжают оставаться в плену старой механистической методологии. И теория электромагнитного поля, и кинетическая теория теплоты развиваются на основе механистических представлений. Господствует мнение, что до окончательного создания абсолютной механистической картины мира осталось совсем немного. И поэтому у многих физиков крепнет надежда на построение механистической теории теплоты, механистической теории электрических и магнитных явлений и т.п.

От термодинамики к статистической физике: изучение необратимых систем.

Для нас совершенно очевидно представление об однонаправленности времени, его необратимости и невозвратности. Это представление формируется на основе отражения большинства процессов, систем живой и неживой природы, с которыми человек повсеместно сталкивается в своей жизненной практике. И только очень небольшое количество механических систем (и то со значительной долей идеализации) относится к обратимым системам. Классическая механика долгое время занималась исключительно моделированием обратимых систем. В XIX в. термодинамика развивается как теоретическая база теплотехники и как важная отрасль теоретической физики, объясняющая сущность тепловой энергии. С. Карно показал, что теплота создает механическую работу только при тепловом «перепаде». Справедлива и обратная теорема: затрачивая механическую энергию, можно создать разность температур (T1-T2), которая определяет коэффициент полезного действия (кпд) тепловых машин. Свои теоретические соображения Карно в конечном счете обосновывает невозможностью вечного двигателя, рассматривая это положение в качестве исходной аксиомы физики – первого начала термодинамики.В свете закона сохранения и превращения энергии в середине XIX в. стало ясно, что теория Карно требует серьезной перестройки и дополнительного исследования. На это обратили внимание Р. Клаузиус и У. Томсон (барон Кельвин). Клаузиус ставит задачу связать переход теплоты от одного тела к другому с превращением теплоты в работу и установить количественные соотношения между этими процессами. В реальных тепловых двигателях процесс превращения теплоты в работу неизбежно сопровождается передачей определенного количества теплоты внешней среде. В результате нагреватель охлаждается, внешняя среда нагревается. Это значит, что термодинамические процессы носят необратимый характер, т.е. могут протекать только в одном направлении. Иначе говоря, невозможен процесс, при котором теплота переходила бы самопроизвольно от холодных тел к телам нагретым. Это и есть одна из формулировок второго начала термодинамики. Решая эту задачу, Клаузиус вводит понятие энтропии – функции состояния системы.Уже в начале XX в. (В. Нернст, 1906) было сформулировано третье начало термодинамики, согласно которому при стремлении температуры Т к абсолютному нулю энтропия (Е) любой системы стремится к конечному пределу, не зависящему от давления, плотности или фазы (при Т —> 0 ∆Е —> 0). Иначе говоря, ни в каком конечном процессе, связанном с изменением энтропии, достижение абсолютного нуля невозможно; к нему можно лишь бесконечно приближаться.

Значительные результаты были получены Л.Больцманом, который показал, что идеальный газ, находящийся первоначально в нестационарном состоянии, с течением времени сам собой должен переходить в состояние статистического равновесия. Эту теорему Больцман истолковал как доказательство статистического характера второго начала термодинамики. Из принципов статистической термодинамики Больцман непосредственно выводит идею необратимости молекулярных процессов. Энергия переходит из менее вероятной формы в более вероятную. Если первоначальное распределение энергии в телах было менее вероятным, то в дальнейшем вероятность распределения увеличится. Больцман формулирует и новую интерпретацию энтропии. В соответствии с ней энтропия есть логарифм вероятности состояния системы: Е = к lnW. Эта формула высечена на памятнике Больцману на венском кладбище.

Статистическая термодинамика находит свое развитие в работах Дж. Гиббс а, в его статистической механике (1902). Гиббс рассматривает статистическую механику как теорию ансамблей (мысленная совокупность невзаимодействующих систем), не зависящих от конкретного состава и строения тех систем, из которых они составлены. Статистическая механика Гиббса оказалась способна обосновать все три принципа термодинамики, вычислять термодинамические величины для конкретных систем, решать любую задачу относительно равновесной системы, состоящей из произвольного числа независимых компонентов и сосуществующих фаз. Но вопрос о соотношении обратимости и необратимости Гиббсом был по сути обойден. В 1906 г. М. Смолуховский разрабатывает теорию флуктуаций (беспорядочных колебаний относительно некоторого среднего значения) и применяет ее к анализу явлений, в которых может непосредственно наблюдаться антиэнтропийное поведение. Смолуховский приходит к идее относительности обратимости и необратимости, их зависимости от времени, в течение которого наблюдается процесс.

Новый этап в развитии исследований необратимых систем наступил только в конце XX в., с созданием теории самоорганизации (синергетики).

Развитие представлений о пространстве и времени.

Во второй половине XIX в. физики все чаще анализируют фундаментальные основания классической механики. Прежде всего это касается понятий пространства и времени, их ньютоновской трактовки. Предпринимаются попытки придать понятию абсолютного пространства и абсолютной системы отсчета новое содержание взамен старого, которое им придал еще Ньютон. Так, в 1870-е гг. было введено понятие a-тела – такого тела во Вселенной, которое можно считать неподвижным и принять за начало абсолютной системы отсчета. Некоторые физики предлагали принять за а-тело центр тяжести всех тел во Вселенной, полагая, что этот центр тяжести можно считать находящимся в абсолютном покое.

В конце XIX в. с резкой критикой ньютоновского представления об абсолютном пространстве выступил немецкий физик и философ Э. Мах. В основе представлений Маха лежало убеждение в том, что «движение может быть равномерным относительно другого движения. Вопрос, равномерно ли движение само по себе, не имеет никакого смысла». Это представление Мах переносит не только на скорость, но и на ускорение. С точки зрения Маха, всякое движение относительно пространства не имеет никакого смысла, о движении можно говорить только по отношению к телам, а значит, все величины, определяющие состояние движения, являются относительными. Следовательно, и ускорение тоже относительная величина. К тому же опыт не может дать сведений об абсолютном пространстве.

К новым идеям о природе пространства и времени подталкивали физиков и результаты математических исследований, открытие неевклидовых геометрий. Так, согласно идее английского математика В. Клиффорда, высказанной в 1870-х гг., многие физические законы могут быть объяснены тем, что отдельные области пространства подчиняются неевклидовой геометрии. Более того, он считал, что кривизна пространства может изменяться со временем, а физику можно представить как некоторую геометрию. Клиффорд предложил нечто вроде полевой теории материи, где материальные частицы представляют собой сильно искривленные области пространства, а «изменение кривизны пространства и есть то, что реально происходит в явлении, которое мы называем движением материи, будь она весомая или эфирная». Вследствие искривления пространства действительная геометрия мира подобна «холмам» на ровной местности, а перемещение частиц материи есть не что иное, как перемещение «холма» от одной точки к другой. Клиффорд принадлежит к ряду немногочисленных в XIX в. провозвестников эйнштейновской теории гравитации.

Теория электромагнитного поля.

К середине XIX в. в тех отраслях физики, где изучались электрические и магнитные явления, был накоплен богатый эмпирический материал, сформулирован целый ряд важных закономерностей: закон Кулона, закон Ампера, закон электромагнитной индукции, законы постоянного тока и др. Однако единства во взглядах физиков на электрические и магнитные явления не было. Так, резко отличалась от корпускулярных подходов полевая концепция Фарадея. Но на нее смотрели как на заблуждение, ее замалчивали и остро не критиковали только потому, что слишком велики в развитии физики были заслуги Фарадея. И тем не менее именно полевой подход оказался наиболее плодотворным в создании единой теории электрических и магнитных явлений. Это была революционная по своему значению теория Дж. Максвелла. Максвелл создал теорию электромагнитного поля, которая изложена в работе «Динамическая теория электромагнитного поля», опубликованной в 1864 г. Максвелл сформулировал фундаментальные уравнения классической электродинамики, названные его именем, которые связывают величины, характеризующие электромагнитное поле (напряженность электрического и магнитного полей, электрическая и магнитная индукция), с его источниками, т.е. распределенными в пространстве электрическими зарядами и токами.

После создания теории электромагнитного поля стало понятно, что существует только одна среда - эфир, по которому распространяются электрические, магнитные и световые волны. Значит, судить о природе эфира можно на основе изучения закономерностей распространения электромагнитных волн. Но этим проблема эфира не была разрешена, а, наоборот, еще больше усложнилась - надо было объяснять, как в нем распространяются электромагнитные волны. Сначала эту задачу пытались решить на пути поисков механистических моделей эфира. Однако механистические модели эфира - носителя электромагнитных волн - несмотря на все попытки их усовершенствовать, оказывались противоречивыми и бесплодными. Предлагались различные модели эфира: на основе сплошных, прерывистых сред и др. В конце XIX в. существование эфира начали вообще подвергать сомнению, а главное внимание с проблемы построения механистических моделей эфира было перенесено на вопрос о том, как распространить систему уравнений Максвелла, созданную для описания покоящихся систем, на случай движущихся тел (источников или приемников света).

Открытие рентгеновских лучей и радиоактивности.

В 1895 г. В. Рентген обнаружил лучи, получившие впоследствии название рентгеновских. Это открытие заинтересовало физиков и вызвало широкую дискуссию о природе этих лучей. В течение короткого времени были выяснены необычные свойства этих лучей (способность проходить через светонепроницаемые тела, ионизировать газы и т.д.), но их природа оставалась неясной. Открытие рентгеновских лучей способствовало исследованиям электропроводности газов и изучению катодных лучей. Заинтересовавшись открытием Рентгена, английский физик Дж. Дж. Томсон (совместно с Э. Резерфордом) установил, что под действием облучения рентгеновскими лучами резко возрастает электрическая проводимость газа и это свойство сохраняется некоторое время после прекращения облучения. Анализ подвел к выводу, что проводниками электричества в газах являются заряженные частицы, образующиеся в результате действия рентгеновских лучей. Перед Томсоном встали вопросы: что это за частицы, каковы их заряд и масса. Поиски ответов на эти вопросы привели Томсона к открытию первой элементарной частицы - электрона и определению его заряда и массы.

Важнейшим достижением физики конца XIX в. было открытие радиоактивности. В 1896 г. Анри Беккерель, исследуя загадочное почернение фотографической пластинки, оставшейся в ящике письменного стола рядом с кристаллами сульфата урана, случайно открыл радиоактивность. Систематическое исследование радиоактивного излучения было предпринято Э. Резерфордом; он установил, что радиоактивные атомы испускают частицы двух типов, которые назвал альфа- и бета-частицами. Тяжелые положительно заряженные альфа-частицы, как выяснилось, представляли собой быстро движущиеся ядра гелия, а бета-частицы оказались летящими с большой скоростью электронами.

Кризис в физике на рубеже веков.

С XVII в. в физике и механистической философии массу понимали как количество материи в теле и рассматривали как основной признак материальности. Открытие зависимости массы электрона от его скорости, гипотеза о чисто электромагнитной природе массы как будто лишали тела материальности. Возник вопрос об исчезновении массы и материи вообще, поскольку масса понималась как основной признак материальности тела. Некоторые физики и философы высказывали мнение о том, что «материя исчезла», что само развитие науки заставляет отказаться от признания существования материи и справедливости общих важнейших физических законов (закона сохранения массы, закона сохранения количества движения и др.). Ситуация усугублялась с открытием радиоактивности. Ведь не было ответа на вопрос об источнике энергии, которую несет с собой радиоактивное излучение. В связи с этим высказывалось сомнение и во всеобщности закона сохранения энергии.

В таких условиях в физике складывается атмосфера разочарования в возможностях научного познания истины, начинается «брожение умов», распространяются идеи релятивизма и агностицизма. Ситуацию, сложившуюся в физической науке на рубеже XIX—XX вв., А. Пуанкаре назвал кризисом физики. «Признаки серьезного кризиса» физики он в первую очередь связывал с возможностью отказа от фундаментальных принципов физического познания. «Перед нами «руины» старых принципов, всеобщий «разгром» таких принципов», - утверждал он. Закон сохранения массы, закон сохранения количества движения, закон сохранения энергии — все эти фундаментальные принципы, которые долгое время считались незыблемыми, теперь подвергают сомнению. В начале XX в. кризис в физике разрешается с созданием двух новь способов физического познания — релятивистского и квантового. На их основе формируется неклассическая физика и новая, современная физическая картина мира.

 

Вопросы к семинару:

1. Второе начало термодинамики и теория тепловой смерти Вселенной.

2. Философские и математические противоречия механистических представлений о времени и пространстве.

3. Общая теория электромагнитного поля и проблема эфира.

4. Открытие радиактивности и рентгеновского излучения.

5. Кризис классической естественнонаучной картины мира.

 

Дополнительная литература:

Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. М.: Едиториал УРСС, 2003.

Пуанкаре А. О науке. Изд. 2-е. М.: Наука, 1990.

 

 


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.