Значение видоизмененных корней — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Значение видоизмененных корней

2022-10-10 39
Значение видоизмененных корней 0.00 из 5.00 0 оценок
Заказать работу

Запасающая функция (корнеплоды, корневые клубни (корневые шишки)).

Корнеплоды (морковь, репа, свекла) — разрастание верхней части корня, в который затягивается нижняя часть стебля или весь укороченный побег (рис. 15).

Рис. 15

Корневые клубни, или корневые шишки, (георгин, батат) — разрастание боковых корней (рис. 16).

Рис. 16

Воздушные корни эпифитных растений (рис. 17) служат для поглощения воздушной влаги, т. к. не имеют возможности получать питательные вещества из почвы.

Рис. 17

У орхидей такие корни покрыты несколькими слоями мертвых клеток, образующих губчатую поверхность. Такие корни могут впитывать воду во время дождя и росы, а также поглощать ее из воздуха в виде водяных паров. Находясь на свету, их клетки часто содержат хлоропласты и берут на себя функцию фотосинтеза.

Опорные корни, или корни-ходули, (баньян, кукуруза (рис. 18)) — придаточные корни у ряда крупных деревьев в тропиках образуются на боковых ветвях высоко над землей. Они поддерживают тяжелые боковые ветви, а также служат им источником минерального питания.

Рис. 18 Рис. 19

Дыхательные корни — это боковые корни, которые растут не вниз, как положено корням, а вверх (рис. 19). Образуются на заболоченных почвах, где корням для нормального функционирования часто не хватает кислорода. Достигая незатопляемой поверхности, они образуют на концах открытые в воздух отверстия. Внутри таких корней формируется воздухоносная паренхима с большими соединенными по всей длине корня межклетниками. По ним кислород диффундирует вглубь корневой системы, обеспечивая клеткам корней возможность получать достаточное количество энергии.

Фотосинтез и хемосинтез

Определение

Фотосинтез — процесс синтеза органических веществ из неорганических (воды и углекислого газа) с использованием энергии солнечного света.

Первые опыты по фотосинтезу были проведены Джозефом Пристли в XVIII в., когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал быть способен поддерживать горение, помещенные в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод, что растения выделяют кислород, который необходим для дыхания и горения.

Определение

Фототрофы — организмы, использующие фотосинтез.

Фотоавтотрофамиявляются большинство растений и некоторые бактерии.

Фотосинтетические пигменты

Фотосинтез может осуществляться только с помощью определенных веществ — пигментов.

Фотосинтетические пигменты высших растений делятся на две группы: хлорофиллы и каротиноиды.

Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света.

Данные о наличии у красных водорослей хлорофилла d в настоящее время не подтверждаются — по всей видимости, в экспериментах пробы были загрязнены цианобактериями, у которых этот тип хлорофилла действительно встречается. Однако во многих источниках можно по-прежнему встретить информацию о наличии хлорофилла d у красных водорослей.

У растений в фотосинтезе участвует пигмент хлорофилл, который содержится в хлоропластах на мембранах тилакоидов. Хлорофилл придает хлоропластам и всему растению зеленую окраску.

 

По химическому строению хлорофилл напоминает белок крови — гемоглобин. Он имеет такое же порфириновое кольцо, только у гемоглобина в центре этого кольца находится атом железа, а у хлорофилла — магний. Порфириновое кольцо представляет собой почти плоскую пластинку, от которой отходят две органических цепочки, одна из которых очень длинная, отходит под углом, и с ее помощью хлорофилл крепится к мембранам.

Уникальное свойство хлорофилла: он умеет поглощать энергию солнечного света, переходя в возбужденное состояние.

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

Хлорофилл а — единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе.

Спектры поглощения хлорофиллов a и b и спектр каротиноидов.

Каротиноиды — пигменты желтого, красного и оранжевого цвета. Они придают окраску цветкам и плодам растений. Каротиноиды постоянно присутствуют в листьях, но незаметны из-за присутствия хлорофилла. Зато осенью, когда хлорофилл разрушается, каротиноиды становятся хорошо видны. Именно они придают листьям желтую и красную окраску.

Функции каротиноидов:

  • поглощают солнечный свет (особенно в коротковолновой — сине-фиолетовой — части спектра) и поглощенную энергию передают хлорофиллу;
  • защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Пигменты бактерий

Фотосинтез

Процесс фотосинтеза включает 2 фазы:

световая фаза:

  • на свету;
  • на мембранах тилакоидов;

темновая фаза:

  • на свету и в темноте;
  • в строме хлоропласта.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла. Сам процесс происходит примерно в 1 % молекул хлорофилла. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно, в фотосистеме II — P680, а в фотосистеме I — P700. Они поглощают свет именно такой длины волны (680 и 700 нм).

  • Молекулы хлорофилла двух фотосистем поглощают квант света. Один электрон каждой из них переходит на более высокий энергетический уровень (возбуждается).
  • Возбужденные электроны обладает очень высокой энергией. Они отрываются и поступают в особую цепь переносчиков в мембранах тилакоидов — молекулы НАДФ+, превращая их в восстановленный НАДФ. Таким образом, энергия света превращается в энергию восстановленного переносчика.
  • В молекулах хлорофилла на месте электронов после их отрыва образуются "дырки" с положительным зарядом.
  • Фотосистема I восполняет потерю электронов через систему переносчиков электронов от фотосистемы II.
  • Фотосистема II забирает электрон у воды (фотолиз воды), при этом образуются ионы водорода.
  • Фотолиз воды — процесс распада воды под действием солнечного света.

  • Побочным продуктом распада воды является кислород, выделяющийся в атмосферу.
  • НН+, образовавшиеся при фотолизе воды, переносятся в полость тилакоида.
  • В полости тилакоида накапливается большой избыток ионов водорода, что приводит к созданию на мембране тилакоида крутого градиента концентрации этих ионов.
  • Он используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфата.
  • Происходит перенос ионов водорода НН+ через мембрану восстановленным переносчиком НАДФ (никотинамидадениндинуклеотидфосфатом) с образованием НАДФ*Н.

Таким образом, энергия света запасается в световой фазе фотосинтеза в виде двух типов молекул: восстановленного переносчика НАДФ*Н и макроэргического соединения АТФ. Кислород, выделяющийся при этом, является с точки зрения фотосинтеза побочным продуктом.

Роль световой фазы:

  • перенос протонов водорода через систему переносчиков с образованием энергии АТФ;
  • образование НАДФ*Н;
  • выделение молекулярного кислорода в атмосферу.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательными компонентами являются АТФ и НАДФ*Н (из световой фазы), углекислый газ (из атмосферы) и вода. Происходит в строме хлоропласта.

В темновой фазе с участием АТФ и НАДФ*Н происходит восстановление CO2 до глюкозы (C6H12O6).

Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

Растение постоянно поглощает углекислый газ из атмосферы. Для этой цели на поверхности листа имеются специальные структуры — устьица. Когда они открываются, CO2 поступает внутрь листа, растворяется в воде и восстанавливается до глюкозы с помощью НАДФ и АТФ.

Избыток глюкозы запасается в виде крахмала. Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по ситовидным трубкам флоэмы по всему растению и поступают именно туда, где больше всего нужна энергия, например в точки роста.

Цикл Кальвина

С3- и С4-фотосинтез

Суммарное уравнение фотосинтеза выглядит следующим образом:

6СО2 + 6Н2О+ энергия света → С6Н12О6 + 6О2.

Значение фотосинтеза

  • Фотосинтез является основным источником органического вещества на Земле, то есть обеспечивает живые организмы веществом и энергией.
  • Он служит источником кислорода, составляющего 20 % атмосферы Земли. Весь атмосферный кислород образовался в результате фотосинтеза. До появления организмов, осуществляющих фотосинтез с выделением кислорода (около 3 млрд лет назад), атмосфера Земли не содержала этого газа.

 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.