Часть 1 - Нейтронный гамма–каротаж (НГК). — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Часть 1 - Нейтронный гамма–каротаж (НГК).

2022-09-12 29
Часть 1 - Нейтронный гамма–каротаж (НГК). 0.00 из 5.00 0 оценок
Заказать работу

 

Метод НГК является одним из ведущих методов исследования скважин нефтяных и газовых месторождений. В комплексе с другими методами нейтронный гамма–каротаж применяется для литологического расчленения разрезов скважин, выделения коллекторов, оценки пористости, отбивки водонефтяного и газонефтяного контактов и т. п.

В нейтронном гамма–каротаже измеряется ис­кусственно вызванное гамма–излучение горных пород. Для возбуждения этого излучения стенки скважины бомбардируют нейтронами. НГК основан на измерении характеристик поля γ – излучения, возникающего под действием внешнего источника нейтронов.

Скважинный прибор НГК включает в себя источник нейтронов и детектор гамма–излучения. В качестве источников нейтронов в России применяют обычно ампулы, заполненные смесью порошкообразного бериллия и какой–либо соли полония. Ро–Ве источник дает около 2*106 нейтронов в секунду на 1 г полония и примерно столько же гамма–квантов. Большая часть нейтронов – быстрые, с энергиями от 3,5 до 6 МэВ.

Поскольку нейтроны не имеют электрического заряда, проникающая способность их очень велика. Сталкиваясь с ядрами атомов горных пород, нейтроны теряют часть своей энергии и замедляются. При этом большая часть кинетической энергии теряется при соударении с ядрами легких атомов, главным образом, водорода. После примерно 25 соударений с ядрами водорода нейтроны замедляются до "тепловых" энергий (около 0,025 эВ) и диффундируют через породы, пока не будут захвачены. Тепловые нейтроны могут захватываться ядрами всех элементов, кроме Не. Низкие сечения захвата тепловых нейтронов имеют О и С. Аномально высокие сечения захвата у таких элементов, как T, Сd, В, С1 и некоторых других. Акт захвата теплового нейтрона сопровождается испусканием γ – квантов, которые образуют так называемое γ – излучение радиационного захвата (ГИРЗ). Часть этих γ –квантов фиксируется детектором в скважинном снаряде НГК.

Кроме радиационного гамма–излучения (I),детектор будет фиксировать также и гамма – кванты другого происхождения. Суммарную зарегистрированную интенсивность гамма – излучения можно представить в виде ряда:

IΣ = I+ Iу + Iф + Iγγ,                                  (6)

где Iγ– естественное гамма – излучение пород; Iф – фоновое гамма –излучение источника нейтронов; I γγ гамма – излучение источника, претерпевшее комптоновское рассеяние в породах и обсадных трубах скважины.

Общая величина γ – излучения, регистрируемая при НГК, слагается из трех компонентов:

1) интенсивности γ – излучения Ιнгк, возникающего в результате радиационного захвата ядрами породы;

2) γ – излучения Ιггк источника нейтронов, которое воздействует на индикатор непосредственно или вследствие облучения стенок скважины γ–лучами, часть которых рассеивается породой в направлении индикатора;

3) естественного γ–излучения Ιгк, обусловленного естественной радиоактивностью породы.

Для выделения исследуемой составляющей I приходится прибегать к уменьшению влияния остальных составляющих Iу, Iф, Iγγ. Для уменьшения влияния естественной радиоактивности Iу выбирают, с одной стороны, мощность источника нейтронов такой, чтобы вызванное им гамма–излучение было, по крайней мере, на порядок больше естественного. С другой стороны, уровень естественной радиоактивности может быть учтен вычитанием показаний ГК из диаграмм НГК.

Для ослабления фонового гамма – излучения источника Iф между источником и детектором располагают мощный свинцовый экран. Для поглощения мягкого рассеянного излучения Iγγ детектор излучения помещают в стальную гильзу (рис. 1). Выделенная таким образом составляющая I зависит, в основном, от содержания водорода в исследуемой среде. Когда скважинный снаряд проходит через формации с высоким содержанием водорода (в составе воды или нефти и газа), уровень наведенного гамма – излучения будет низким, т. к. большинство нейтронов будет замедлено и поглощено в непосредственной близости от источника и только некоторые из гамма –квантов смогут достичь детектора и будут зарегистрированы.

Если породы содержат мало водорода или не содержат вообще, нейтроны успевают распространиться далеко от источника прежде, чем они будут замедлены и захвачены.

При длине зонда 0,6 м и выше большая часть нейтронов будет поглощена где–то вблизи детектора гамма –излучения, и на диаграммах НГК будет наблюдаться высокий уровень интенсивности ГИРЗ.

При исследованиях зондами, длина которых L3 более 40 см, плотность нейтронов в среде с большим водородосодержанием в зоне размещения индикатора мала, поскольку в такой среде нейтроны замедляются и поглощаются в основном вблизи источника. В результате породы с высоким водородосодержанием отмечаются на диаграммах НГК низкими показаниями.

 

Рисунок 1. Устройство зонда нейтронного гамма – каротажа.

 

В малопористых породах с низким водородосодержанием плотность нейтронов вблизи индикатора увеличивается, что вызывает повышение интенсивности показаний НГК. По нейтронным свойствам осадочные горные породы можно разделить на две группы – большого и малого водородосодержания.

       К первой группе относятся: глины, характеризующиеся высокой влагоемкостью (пористостью) и содержащие значительное количество минералов с химически связанной водой (водные алюмосиликаты), гипсы, отличающиеся малой пористостью, а также некоторые очень пористые и проницаемые песчаники и карбонатные породы. При измерениях большими зондами (L3 ≥ 40см) на диаграммах эти породы отмечаются низкими показаниями.

Во вторую группу пород входят – плотные известняки и доломиты, сцементированные песчаники и алевролиты, на диаграммах нейтронного гамма – каротажа эти породы выделяются высокими показаниями.

Против других осадочных пород (песков, песчаников, пористых карбонатов) показания НГК зависят от их глинистости и содержания в них водорода (насыщенности водой, нефтью и газом). Нефть и вода содержат почти одинаковое количество водорода, поэтому нефтеносные и водоносные пласты с малым содержанием хлора отмечаются приблизительно одинаковыми значениями НГК. Газоносные пласты в обсаженной скважине отмечаются на кривой НГК более высокими показаниями, чем такие же по литологии и пористости нефтенасыщенные пласты.

Интерпретация результатов НГК.

 

Метод НГК дифференцирует породы по водородосодержанию. Как известно, среди осадочных пород наибольшее количество водорода содержат глины в составе химически связанной и поровой воды. Общее содержание воды в глинах может достигать 44%. Поэтому на диаграммах НГК глины выделяются самыми низкими значениями и представляют собой надежный "базовый" или опорный горизонт.

Самые же высокие уровни радиационного гамма – излучения наблюдаются против плотных малопористых известняков, которые могут служить другим опорным горизонтом, с минимальной пористостью (Kn ≈ 1%).

Песчаники и пески не содержат химически связанной воды, вследствие чего даже самые пористые из них отмечаются более высокими значениями НГК, чем глины. Среди гидрохимических осадков наименьшими значениями Iвыделяются гипсы благодаря высокому (до 48%) содержанию кристаллизационной воды, наибольшими – ангидриты.

Уровень записи Ixнад пластом–коллектором (песчаник) занимает промежуточное положение между глинами и известняками и зависит от пористости и глинистости коллектора.

Определение границ и мощностей пластов. Контакты и мощности пластов в НГК определяются так же, как и в ГК, главным образом, по правилу полумаксимума аномалии.

Определение коэффициента пористости. Поскольку показания НГК зависят от полного водородо–хлоросодержания породы, включая содержание кристаллизационной воды и воды, адсорбированной глинистой частью породы, то наиболее точные результаты по определению пористости получаются в карбонатных отложениях. При количественной интерпретации диаграмм НГК величина интенсивности I, снятая против изучаемого пласта, непосредственно не используется. Причиной этого являются отсутствие строгой эталонировки радиометров и наличие сторонних излучений от самого источника нейтронов и рассеянного гамма–излучения, которые очень трудно учесть полностью.


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.