Вопрос 23. Гуминовые и фульвокислоты. — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Вопрос 23. Гуминовые и фульвокислоты.

2022-09-11 81
Вопрос 23. Гуминовые и фульвокислоты. 0.00 из 5.00 0 оценок
Заказать работу

Гуминовые кислоты — это группа высокомолекулярных органических кислот характерного темного цвета, хорошо растворимых в щелочах и нерастворимых в органических и минеральных кислотах. Вступая в реакцию с кальцием, магнием, калием и другими содержащимися в земле щелочными металлами, гуминовые кислоты преобразуются в соли — гуматы, которые не растворяются в воде и имеют свойство закрепляться в почвах. Гуминовые кислоты из-за своих уникальных свойств представляют наиболее ценную часть гумуса, поскольку благодаря им необходимые растениям питательные микроэлементы становятся доступными для растений.

Гуминовые кислоты улучшают способность почвы поглощать и удерживать в своей толще ионы и молекулы различных полезных веществ из растворов, что способствует накоплению питательных элементов. Известно, что при наиболее благоприятных условиях гумификации органических остатков образуется гумус, обогащенный именно гуминовыми кислотами.

Фульвокислоты — это группа желтоокрашенных азотсодержащих гумусовых кислот. В отличие от гуминовых в них содержится малое количество углерода, зато отмечается повышенное содержание кислорода и водорода. Отличающиеся повышенной активностью соли фульвокислот (фульваты) практически моментально растворяются в воде и практически не удерживаются в почвах. Однако фульвовая кислота способствует увеличению в размерах клеточных пор корневой системы растений, что позволяет клеткам более активно поглощать питательные вещества. Фульвокислоты принимают активное участие в нейтрализации содержащихся в почве токсинов, обладают антиоксидантными свойствами.

В зависимости от соотношения гуминовых и фульвовых кислот выделяют два основных типа гумуса: гуматный и фульватный. Первый вид гумуса характерен для черноземов и темно-каштановых почв. Вообще, наибольшие запасы гумуса традиционно наблюдаются в почвах подзоны типичных черноземов. Содержание гумуса в таких почвах обычно достигает до 10% (в верхнем слое). Не случайно именно чернозем является своеобразным почвенным эталоном, наиболее объективно отражающим свойства почв. Фульватный тип гумуса свойственен сероземам, светло-каштановым почвам, бурым, подзолистым и дерново-подзолистым почвам.

Гуминовые кислоты состав. Они изучены лучше других. Их элемент­ный состав и структура непостоянны. Содержание углерода в гуминовых кислотах 52—58%, водорода 3,3—4,8, азота 3,6—4,1 и кислорода 34—39 %. При переходе от северных лесных почв к южным степным уменьшается гидратация, понижается окисленность гуминовых кислот и повышается содержание углерода. Постоянным компонентом гуминовых кислот является азот; Часть его представлена аминокислотами, находящимися в не­прочной связи с ядром гуминовой кислоты. Другая часть связана с ядром прочно. Наличие в составе гуминовых кислот прочно свя­занного азота свидетельствует о том, что эти кислоты являются продуктами конденсации полифенов, источником которых служат дубильные вещества и лигнин с аминокислотами.

В группе гуминовых кислот выделяют бурые гуминовые кисло­ты, находящиеся в почве преимущественно в свободном состоя­нии, и черные, которые образуют соли с кальцием и магнием. Бу­рые гуминовые кислоты называют еще ульминовыми. Они имеют менее конденсированное ядро и более подвижны.

По химическому строению гуминовые кислоты представляют собой настоящие органические кислоты, т. е. соединения, в со­став которых входят карбоксильные группы (СООН). Таких групп в молекуле гуминовых кислот четыре, т. е. эти кислоты яв­ляются четырехосновными. Молекулярная масса их около 1400. Кроме карбоксильной гуминовой кислоты имеют три—шесть фенольных групп (ОН), первичные и вторичные спиртовые группы (ОН), а также метоксильные (ОСНз) и карбонильные (СО) группы. В состав ядра молекул гуминовых кислот входят бензольные кольца. Гуминовые кислоты в свободном виде представляют собой черный блестящий порошок игольчатого или зернистого строе­ния. При обработке водой они дают слабые коллоидные раство­ри буроватого цвета. Со щелочными катионами — натрием, ка­мнем, аммонием, литием гуминовые кислоты дают соли, малорастворимые в воде с образованием молекулярных растворов. Такие растворы в тонком слое прозрачны, бурого цвета, а в толстом слое непрозрачны и черного цвета. С двухвалентными катионами кальция, бария, магния и другими, а также с трехвалентными ка­тионами железа и алюминия гуминовые кислоты дают соли, нера­створимые в воде.

Фульвокислоты состав. Представляют собой настоящие органические кислоты, относящиеся к группе оксикарбоновых кислот, содержат азот. Элементный состав фульвокислот подзолистой почвы следующий: углерода 45,3 %, водорода 5, кис­лорода 47,3, азота 2,4 %. Таким образом, содержание углерода и азота в фульвокислотах значительно ниже, а кислорода значитель­но выше, чем в гуминовых кислотах. Они имеют те же функцио­нальные группы (карбоксильные, фенольные и др.), что и гумино­вые кислоты, но ядро фульвокислот отличается менее выражен­ным ароматическим строением, а боковых радикалов у них боль­ше, чем у гуминовых кислот. Они менее конденсированы и имеют более простое строение.

Фульвокислоты способны разрушать минералы, образовывать комплексные и внутрикомплексные соединения с гидроксидами и играют существенную роль в подзолообразовании. Экви­валентная масса фульвокислот равна 160, т. е. вдвое ниже, чем у гуминовых кислот. Свободные фульвокислоты имеют коллоид­ный характер. Степень диссоциации фульвокислот значительно выше, чем у гуминовых кислот. Соли фульвокислот со щелоч­ными и щелочноземельными металлами растворимы в воде. С алюминием и железом фульвокислоты дают соединения, нера­створимые в воде при нейтральной реакции, но растворяющие­ся при кислой или щелочной реакции раствора. В почве фуль­вокислоты, видимо, связаны с гуминовыми кислотами, образуя с ними соединения типа сложных эфиров. В гумусово-иллювиальных горизонтах некоторых подзолистых почв фульвокислота закреплена в форме соединений с железом и особенно с алюми­нием.

Свойства гуминовых и фульвокислот. Их роль в процессах почвообразования.

Гуминовые кислоты — это группа веществ темного цвета, кото­рые выделяются из почвы щелочами и осаждаются кислотами. Они характеризуются высоким содержанием углерода (50—62 %), аморфным состоянием, полидисперсностью (различной величиной частиц) и гетерогенностью.

При взаимодействии с катионами гуминовые кислоты образу­ют соли — гуматы. Гуматы одновалентных катионов К+, Na+, N+ образуют в почве коллоидные растворы — золи, которые легко растворяются и вымываются из почвы. Гуматы двух- и трехва­лентных катионов (Са2+, Mg2+, Al3+, Fe3+) находятся в почве в виде нерастворимых гелей, не вымываются, накапливаются в мес­тах образования, больше всего их в верхних слоях почвы. Гуминовые кислоты - наиболее ценная часть гумуса, они име­ют большую собирательную поверхность, играют важную роль в образовании агрономически ценной структуры почвы и основного фонда питательных веществ (прежде всего азот для растений).

Фульвокислоты — это гуминовые вещества желтого или крас­ного цвета, которые остаются в растворе после выпадения в оса­док гуминовых кислот. Фульвокислоты отличаются от гуминовых меньшим содержанием азота, более высокой кислотностью, высо­кой растворимостью в воде их соединений с минеральной частью почвы. Благодаря высокой кислотности фульвокислоты разруша­ют почвенные минералы и способствуют перемещению продуктов разложения в нижние слои почвы.

Гумины представляют собой комплекс гуминовых веществ с меньшим содержанием углерода и состоят из тех же гуминовых и фульвокислот, высоко полимеризованных, уплотненных и более тесно связанных между собой.

Состав перегноя и соотношение гуминовых и фульвокислот в разных почвах неодинаковы. Состав перегноя в значительной мере определяется составом высших растений, остатки которых состав­ляют основу его образования, а также соотношением групп микро­организмов, особенностями увлажнения и распада органического вещества, а в обрабатываемых почвах — способами обработки и удобрением почвы, севооборотами.

 

Вопрос 24. Роль гумуса в почвообразовании и плодородии почв.

Гумус – сложный комплекс органических соединений, который образуется в результате разложения и гумификации органических остатков.

Значение гумуса:

- является источником питания растений. При разложении образуются нитраты, фосфаты, сульфаты и другие вещества;

- гумус – стимулятор роста и развития растений и корневой системы;

- улучшает азотное и кислородное питание, что способствует мощному развитию корней;

- огромная роль в структурообразовании, что обуславливает водно-воздушные свойства;

- обладает высокой поглотительной способностью и предотвращает от вымывания различные соединения, что дает возможность обменным реакциям при внесении удобрений;

- гумус увеличивает буферность почвы;

- огромная роль в формировании почвенного профиля.

Значение гумуса в почвообразовании и поддержании плодородия почв

Гумус является универсальной системой, определяющей и регулирующей практически все факторы, влияющие на формирование почвенного профиля и рост плодородия,

1. Взаимодействуя с минеральной частью почвы, гумусовые вещества и их производные участвуют в трансформации минералов.

Разрушение их фульвокислотами сопровождается миграцией растворимых продуктов, что приводит к образованию элювиальных и иллювиальных горизонтов. При преобладании гуминовых кислот в почвах формируется хорошо выраженный гумусовый горизонт, обладающий высоким уровнем плодородия. Одновременно в пределах каждого конкретного горизонта формируются такие свойства, как структура, влагоемкость, емкость поглощения, буферная способность и другое.

2. Гумус — основной источник энергии в самых разнообразных почвенных процессах. В гумусовой оболочке земли его накапливается 5,33 • 1019 кДж, а в целом в биомассе земли — 6,15 х х 1019 кДж (В.А. Ковда).

3. Гумус является аккумулятором азота, в нем содержится 80-95% почвенного азота. Этот азот имеет особое значение в решении экологических и экономических задач.

4. Гумус — источник СО2, который выделяется при его разложении и обогащает приземный слой воздуха, что повышает продуктивность фотосинтеза. Является источником элементов питания растений, Р, К, Са, Mg, S, микроэлементов, которые накапливаются в составе гумуса в результате взаимодействия гумусовых кислот с минеральной частью почвы и освобождаются при его минерализации.

Аккумуляция погребенных форм гумуса (торфа, углей) приводит к концентрации Си, Ni, Co, Мо и других элементов.

5. Высокогумусовые почвы характеризуются высокой биологической активностью и оптимальным, экологически сбалансированным составом микробных ассоциаций.

6. Гумус — физиологически активное вещество. Продукты гумификации играют большую роль в регулировании состава природных вод, почвенного раствора, атмосферы, являются регуляторами и стимуляторами роста и развития растений.

7. Гумус выполняет санитарно-защитные функции. Благодаря высокой биологической активности он разрушает остатки пестицидов, других токсикантов и загрязнителей, снимает негативное влияние избыточных доз минеральных удобрений.

Роль гумуса возрастает с усилением интенсификации земледелия. При интенсивных технологиях возделывания сельскохозяйственных культур дегумификация усиливается, что требует четких представлений о балансе гумуса в каждом конкретном случае. Эти задачи можно решить лишь при постоянном пополнении запасов органического вещества и создании условий, способствующих его гумификации.

Накоплению гумуса в почвах способствуют растительные остатки и органические удобрения. Количество растительных остатков зависит от структуры посевных площадей, включения промежуточных и пожнивных культур, долевого участия многолетних трав.

Значительную роль в регулировании гумусового баланса играют минеральные удобрения, известкование, мелиорация, система обработки почвы. Каждый из этих составляющих увеличивает урожайность, а значит, и количество растительных остатков, создает хорошие условия для накопления органических веществ в почве.

Для осуществления контроля за гумусовым состоянием почв необходимо создать систему гумусового мониторинга, которая должна осуществлять слежение за изменением содержания гумуса, в первую очередь в пахотных почвах. На этой основе должен разрабатываться тот или иной комплекс мероприятий в целях регулирования баланса гумуса для различных почв.

 


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.