Пути развития звезд и диаграмма Г-Р для звездного скопления — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Пути развития звезд и диаграмма Г-Р для звездного скопления

2021-06-30 28
Пути развития звезд и диаграмма Г-Р для звездного скопления 0.00 из 5.00 0 оценок
Заказать работу

 

Только что мы проследили историю развития звезды с массой в 7 раз больше солнечной до начала ядерного горения углерода в ее недрах. В настоящее время неясно, как протекает дальнейшая жизнь таких звезд. Однако изученная нами часть эволюции звезд уже позволяет сравнить эти результаты с данными астрономических наблюдений. Проведя такое сравнение, мы сможем узнать, насколько правильно наши машинные расчеты для процессов в недрах звезд позволяют предсказать картину, которую мы наблюдаем на звездном небе. Раньше мы уже говорили, что звезды развиваются слишком медленно, и поэтому мы не можем последовательно шаг за шагом проследить развитие каждой звезды и проверить, на самом ли деле ее светимость и температура поверхности меняются таким образом, что звезда перемещается по диаграмме Г-Р из точки на главной последовательности вдоль теоретической траектории в область красных гигантов. Поэтому для проверки теории существуют другие, косвенные способы сравнения с наблюдательными данными. Посмотрим еще раз на схемы развития звезд с одной и семью солнечными массами, показанные на рис. 6.2. Оба эти пути ведут из главной последовательности в область красных гигантов и сверхгигантов. Предположим, что горение водорода началось в недрах этих двух звезд одновременно. В этом случае более тяжелая звезда уже через несколько миллионов лет начнет перемещаться направо по диаграмме Г — Р, в то время как более легкая еще много миллиардов лет будет оставаться в пределах главной последовательности.

Если мы рассмотрим звездное скопление, то окажется, что оно состоит из звезд с разными массами. Если эти звезды возникли примерно в одно время, то тяжелые звезды скопления будут находиться на более поздней стадии развития, чем легкие звезды. Чтобы наблюдать этот эффект, мы с Альфредом Вайгертом в 60-е годы разработали метод, который позволяет наблюдать за различным ходом развития звезд в одном звездном скоплении. Мы рассмотрели искусственное звездное скопление, которое состояло из 190 звезд. Массы этих звезд лежали в интервале от 23 масс Солнца до половины солнечной массы. Распределение звезд по массам было выбрано таким образом, чтобы оно было похоже на распределение звезд по массам в одном из реальных звездных скоплений. Так, например, всего 6 звезд были тяжелее десяти масс Солнца, в то время как в интервале от одной до двух солнечных масс лежало 42 звезды. Для каждой из этих звезд мы построили историю развития.

Начнем наши расчеты в тот момент, когда все звезды лежат на главной последовательности, и изобразим это искусственное звездное скопление на диаграмме Г — Р. В этом случае мы получим нормальную главную последовательность (рис. 6.3, а). Уже через три миллиона лет мы заметим, что в наиболее ярких звездах главной последовательности (они, конечно же, и наиболее тяжелые) водород вблизи центра частично исчерпывается. Эти звезды покидают главную последовательность. Спустя 30 миллионов лет после начала горения водорода наиболее тяжелые звезды нашего искусственного звездного скопления уже заметно смещаются вправо (рис. 6.3, 6) и успевают пройти все фазы своего развития, которые в настоящее время удается моделировать с помощью компьютера. Они находятся в таком состоянии, которое теория не может описать. Эти звезды мы исключали из рассмотрения, поскольку наши расчеты не позволяли дальше следить за их развитием, и они не показаны на следующих диаграммах рис. 6.3.

 

Рис. 6.3. Четыре диаграммы Г-Р для воображаемого звездного скопления на разных стадиях его развития. Каждая точка на диаграммах соответствует звезде с определенной массой. Эти точки перемещаются с течением времени по диаграмме. Траектория этого перемещения определяется компьютерной моделью развития звезд. На каждом из рисунков показано расположение таких точек для соответствующих моментов времени.

 

Диаграмма Г-Р для искусственного звездного скопления в возрасте 30 миллионов лет уже имеет черты сходства с диаграммой Г-Р наблюдаемого звездного скопления. Теперь главная последовательность заполнена звездами только до определенной светимости, в то время как справа от нее расположены красные сверхгиганты. На рис. 6.3, в показано искусственное звездное скопление через 66 миллионов лет после начала горения водорода. Теперь главная последовательность опустела еще больше. Ее покинули звезды с меньшей массой, они переместились в область красных гигантов.

На рис. 6.3, г приведена диаграмма Г-Р нашего искусственного звездного скопления в возрасте 4,2 миллиарда лет. Ее вид существенно отличается от исходной диаграммы. Теперь только самая нижняя часть главной последовательности заполнена звездами. Видно, как более тяжелые звезды образуют изгиб вправо, после которого звезды размещаются вдоль ветви, круто идущей вверх. Эта диаграмма заметно отличается от предыдущих, поскольку легкие звезды развиваются не так, как тяжелые. На рис. 6.3, г показаны звезды типа нашего Солнца, которые перемещаются в область красных гигантов. Если сравнить нашу диаграмму для искусственного звездного скопления с диаграммой Г-Р шарового звездного скопления на рис. 2.9, то мы увидим, что ее характерная структура напоминает диаграмму для очень старого звездного скопления. Здесь мы подошли к границам возможностей современной теории развития звезд. Астроном, изучающий реальное звездное скопление, увидит, как и теоретик, что нижняя часть главной последовательности заполнена звездами и что более тяжелые звезды расположены вдоль кривой, которая вначале изгибается направо, а затем резко идет вверх. Однако наблюдатель увидит еще и множество звезд, светимость которых в видимой области спектра в сотни раз превышает светимость нашего Солнца и которые расположены вдоль горизонтальной линии на диаграмме Г-Р. Эта так называемая горизонтальная ветвь на диаграмме Г-Р шарового звездного скопления отсутствует на диаграмме Г-Р нашего искусственного, вымышленного скопления. Значит, в реальном скоплении имеются звезды, находящиеся на таких стадиях развития, которые современная теория еще не может описать. Вспомним, что когда в наших расчетах звезды проходили все известные стадии развития, мы удаляли их из нашего скопления и больше не рассматривали. Поэтому они отсутствуют на последней картинке.

Таким образом, наши расчеты смогли объяснить важные особенности диаграммы Г-Р наблюдаемого звездного скопления. Теперь мы уже точно знаем, почему заполнена звездами только нижняя часть главной последовательности и почему более тяжелые звезды перемещаются направо, в область красных гигантов. Мы надеемся, что наши компьютерные модели описывают реальные процессы в недрах звезд. Такое мнение подтверждается и другими результатами.

 

Пульсирующие звезды

 

Вернемся к развитию звезды, масса которой в 1 раз больше солнечной. Мы пока еще не обращали внимания на то, что наша звезда во время своего развития несколько раз пересекает примечательную полосу на диаграмме Г-Р, которая на рис. 6.2 ограничена двумя параллельными штриховыми линиями. В этой полосе расположены переменные звезды типа Дельты Цефея, так называемые цефеиды.

Звезда Дельта Цефея является одной из наиболее ярких в этом созвездии. В 1784 г. Джон Гудрайк заметил, что яркость этой звезды меняется. Позже мы еще вернемся к другому важному открытию этого рано умершего глухонемого английского астронома. Вскоре было обнаружено, что яркость этой звезды изменяется с периодом в 5 дней (рис. 6.4). Максимальная яркость этой звезды примерно в 2,5 раза превышает минимальную. Впоследствии было обнаружено много таких звезд. Периоды изменения их яркости различны, в интервале от одного до 40 дней. Температура их поверхности составляет примерно 5300 градусов. Величина их светимости показывает, что они не принадлежат к главной последовательности. Все цефеиды достигли в своем развитии области красных гигантов.

 

Рис. 6.4. Зависимость яркости звезды 5 Цефея от времени. Яркость этой звезды возрастает и убывает с периодом 5,4 дня.

 

Мы уже видели, что путь развития звезды с массой в 7 раз больше солнечной много раз проходит через эту стадию. Первый раз наша звезда пересекает полосу цефеид слева направо. Чтобы миновать эту полосу, такой звезде нужно около тысячи лет. Второй раз она проходит ее справа налево и для этого нужно уже 350000 лет. В это время в недрах звезды уже началось ядерное превращение гелия в углерод, поэтому звезда перемещается по диаграмме Г-Р медленно, ее движением «управляет» горение гелия. Что происходит со звездой, которая достигает на своем пути область, где расположены цефеиды? Почему изменяется ее светимость, когда она находится в полосе, показанной на рис. 6.2 пунктирными линиями? Чем определяется период изменения яркости? Сегодня мы знаем, что меняется не только светимость: звезда периодически увеличивается и уменьшается в размерах в такт с изменением яркости. Такая звезда пульсирует. Почему же пульсируют звезды, когда они находятся в определенной полосе на диаграмме Г-Р?

Строго говоря, ответ на этот вопрос можно найти уже в книге Эддингтона о внутреннем строении звезд, которая вышла в 1926 г. Однако сэр Артур С. Эддингтон, умерший в 1944 г., так и не узнал, насколько близко он подошел к разгадке поведения пульсирующих звезд почти за двадцать лет до того. Следующий большой шаг в решении этой проблемы вслед за Эддингтоном сделал в 1952 г. советский математик Сергей Жевакин. Но вначале его работа была мало кому известна. Только в 1961–1961 годах Джон Кокс из Боулдера (Колорадо) и Норман Бейкер (Нью-Йорк) вместе со мной провели в Мюнхене более точные расчеты, которые подтвердили теорию Эддингтона — Жевакина для пульсации цефеид. Еще и сегодня мы не можем детально объяснить все свойства таких звезд, однако в основном понимаем, почему они пульсируют. Я покажу это на примере простой модели. Конечно же, такая модель позволяет объяснить только главные эффекты.

 

Термодинамическая модель для переменных звезд (цефеид)

 

Гравитационные силы удерживают звездное вещество от разлетания. В нормальной звезде давление газа и сила тяжести в точности уравновешивают друг друга. Простая модель позволяет рассмотреть некоторые особенности такого равновесия, о котором мы часто говорили выше. На рис. 6.5, а показан подвижный тяжелый поршень, который может перемещаться в цилиндре. В цилиндре под поршнем находится газ. Поршень сжимает этот газ и мешает молекулам газа разлететься. Сила тяжести прижимает поршень вниз, однако он не может опуститься до самого дна. Он находится на определенной высоте над дном цилиндра. Если поршень опустится ниже, то газ под ним дополнительно сожмется, его давление возрастет и вернет поршень обратно в положение равновесия. Когда поршень неподвижен, его вес в точности компенсируется давлением газа под ним. Такое состояние очень похоже на равновесие между силой тяжести и давлением газа в любой точке в недрах звезды.

 

Рис. 6.5. Сжатие газа поршнем в цилиндре позволяет смоделировать процессы в цефеидах, а-в цилиндре с поршнем (слева) и в недрах звезды (справа) сила тяжести и давление газа находятся в равновесии; б — если привести поршень в движение, то он будет колебаться, но силы трения скоро остановят его; в — через газ, находящийся в цилиндре, проходит излучение. Если в сжатом состоянии газ поглощает больше энергии, чем в разреженном, то давление газа будет действовать против сил трения и периодическое движение поршня не будет затухать.

 

Если же мы теперь специально выведем поршень из равновесия и немного прижмем его вниз, то поршень начнет колебаться. Если поршень опустится ниже положения равновесия, то давление сжавшегося газа превысит его вес и вытолкнет поршень обратно. Если же он поднимется выше положения равновесия, то давление газа упадет, и сила тяжести вновь вернет поршень вниз. Теперь поршень уже не будет оставаться в положении равновесия. Если он однажды придет в движение, то затем уже будет по инерции проскакивать положение равновесия и начнет колебаться вверх и вниз между двумя крайними точками. Газ при этом служит своего рода пружиной. При сжатии поршень передает газу часть своей энергии. Во время расширения газа эта энергия возвращается поршню. Потери энергии не происходит, поскольку в нашей модели трение пренебрежимо мало. При таких условиях поршень будет перемещаться в цилиндре бесконечно долго. Если трение отсутствует, то максимальное отклонение поршня от средней точки будет постоянным. Период движения поршня зависит от характеристик нашей модели, например от массы поршня и от средней температуры газа.

Поведение звезд в общих чертах напоминает нашу модель. Если сжать звезду равномерно со всех сторон, а затем «отпустить», то возросшее давление газа будет расталкивать звездное вещество во все стороны наружу, и диаметр звезды превысит равновесное значение. После этого сила тяжести окажется больше давления газа. Она будет возвращать газ в сторону центра звезды. Звезда начнет пульсировать. Если ее однажды вывести из равновесия, то затем эти пульсации будут продолжаться долго. Период пульсации звезды можно вычислить по аналогии с периодом пульсации нашего поршня, зная ее свойства: массу, распределение температуры по глубине, а также ее внутреннее строение.

Однако мы слишком упростили нашу модель — как для поршня, так и для звезды. На поршень, конечно же, действуют силы трения. Размах его колебаний будет постепенно уменьшаться под действием этих сил, и, наконец, колебания затухнут. Спустя некоторое время поршень остановится (см. рис. 6.5, б). В недрах звезды тоже происходят процессы, подобные трению, которые тормозят ее колебания. Можно рассчитать, что если искусственно вывести звезду из равновесия, то она совершит всего 5-10 тысяч колебаний. Чтобы вернуться в равновесие, звезде потребуется лишь около 100 лет. Однако наблюдения показывают, что звезда Дельта Цефея, открытая в 1784 г., пульсирует с неизменной силой. Что же служит мотором, который поддерживает пульсации этих звезд, хотя они, казалось бы, должны были затухнуть за относительно короткое время?

Эддингтон предложил в своей книге один из возможных способов объяснения такого процесса. Сквозь внешние слои каждой звезды проникает излучение, возникающее в ее центре. Чтобы имитировать этот процесс с помощью нашей модели, представим себе, что цилиндр изготовлен из прозрачного материала, а сквозь него проходит мощное световое излучение (см. рис. 6.5, в). Газ внутри цилиндра, как и звездное вещество, не совсем прозрачен. Он поглощает часть этого излучения.

При этом газ в цилиндре нагрет так сильно, что разница температур между газом и окружающей средой очень велика, и цилиндр излучает за каждую секунду точно столько же энергии, сколько получает газ за счет частичного поглощения световых лучей.

Теперь выведем поршень из равновесия и немного сожмем газ. При этом давление и температура газа возрастут. Тогда в принципе могут реализоваться два различных случая. Сжатый газ может поглощать излучение сильнее или слабее, чем разреженный. Рассмотрим вначале первый случай. Если поглощение возрастает при сжатии, то, когда поршень опустится, температура газа будет повышаться быстрее, чем в положении равновесия. При этом газ нагреется, и его давление возрастет больше, чем просто под воздействием поршня. Избыточное давление сильнее вытолкнет поршень наружу, чем в первом случае. После того, как поршень минует положение равновесия, газ станет разреженным, а его температура упадет. При этом он будет поглощать меньше энергии, чем в положении равновесия. Газ охладится, его давление уменьшится, и поршень быстро опустится, преодолевая силу трения.

То же самое справедливо и для звезд. Если звездное вещество в определенном слое звезды будет при сжатии поглощать больше энергии и разогреваться, то эта звезда сможет пульсировать, а пульсации будут поддерживаться излучением, которое возникает в ее недрах. Если такая звезда сожмется, то излучение, идущее из ее недр к поверхности, не будет так же легко, как прежде, проходить сквозь ее внешние слои. При этом газ разогреется и звезда расширится. Расширение наступает после фазы сжатия. Вещество становится более прозрачным, оно пропускает больше энергии в окружающее пространство, внутренние части звезды охлаждаются, и сила тяжести снова приведет к сжатию звезды. Звездное вещество служит своего рода вентилем для проникающего наружу излучения. Этот вентиль открывается и закрывается в ритме пульсаций звезды.

Такой механизм Эддингтон описал в своей книге уже в 1926 г. Но, к сожалению, во времена Эддингтона ученые еще очень мало знали о том, как излучение проходит через звездное вещество. Все известные факты говорили о том, что при сжатии звездное вещество должно становиться более прозрачным. Если это так, то все происходит совсем наоборот: поглощение излучения будет действовать в противоположном направлении и не только не будет усиливать колебаний, но еще больше затормозит их. Именно по этой причине сам Эддингтон отверг предложенный им механизм и до самой своей смерти пытался найти другое объяснение для пульсаций цефеид.

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.