Глава 16. Патологическая физиология иммунной системы — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Глава 16. Патологическая физиология иммунной системы

2017-05-20 672
Глава 16. Патологическая физиология иммунной системы 0.00 из 5.00 0 оценок
Заказать работу

 

Система иммунитета, как и другие жизненно важные системы, обеспечивает постоянство внутренней среды организма, его анти­генный гомеостаз. Изменения в деятельности этой системы со­провождаются неадекватными реакциями на антигенный раздра­житель.

К настоящему времени все разнообразие патологии иммунной системы подразделяют на:

ض иммунодефицит — состояние недостаточности иммунного от­вета на антигенную нагрузку;

ض аллергическое состояние — сверхсильный ответ сенсибилизи­рованного организма на антиген;

ض аутоиммунное состояние — образование антител к собствен­ным тканевым структурам с последующими морфологическими и функциональными расстройствами.

Эти иммунопатологические состояния, их переходные формы тем или иным образом включают в себя синдром иммунодефици­та. Поэтому целесообразно говорить о синдроме иммунодефицита в общих рамках иммунопатологии животных.

 

ИММУНОДЕФИЦИТНЫЕ СОСТОЯНИЯ

 

Иммунодефицит (иммунодефицитное состояние, иммунологи­ческая недостаточность) обусловлен выпадением одного или не­скольких специфических компонентов иммунного ответа или вза­имодействующих с ним неспецифических факторов защиты (фа­гоцитоз, система комплемента и др.). Изменения в системе имму­нитета могут возникать на разных этапах созревания, дифференцировки, функциональной активности участвующих в иммунном ответе клеток под влиянием мутагенов, цитостатиков, канцерогенов.

Иммунодефицит препятствует сохранению антигенного посто­янства и целостности организма, так как при этом нарушаются функции распознавания и контроля со стороны иммунной систе­мы. Вид и степень проявления иммунодефицита зависят от того, какое звено иммунной системы нарушено и на какой ступени он­тогенетического развития оно произошло. Различают первичный, в большинстве случаев генетически детерминированный иммуно­дефицит, проявляющийся в раннем постнатальном периоде, и вторичный, возникающий в результате действия (иммунодепрессии) на организм неблагоприятных факторов внешней среды.

 

ПЕРВИЧНЫЕ ИММУНОДЕФИЦИТЫ

 

Первичные иммунодефициты могут быть обусловлены следую­щими факторами:

– дефектом кроветворной стволовой клетки — родоначальницы Т- и В-клеток у млекопитающих;

– дефектом Т-системы иммунитета;

– дефектом В-системы иммунитета;

– комбинированным поражением Т- и В-систем и тесно связан­ными с ними факторами неспецифической защиты.

Дефицит стволовой кроветворной клетки. Синдром ретикуляр­ной дисгенезии характерен полным нарушением образования гемопоэтических клеток — предшественников Т- и В-клеток при сохраняющемся грануло- и эритропоэзе. Первичный дефицит Т- и В-клеток, моноцитов сопровождается иммунологической беззащитностью, несовместимой с жизнью уже в самом раннем возрасте. Больные животные погибают от инфекционных заболе­ваний, нередко сопровождающихся сепсисом.

Дефицит системы Т-лимфоцитов. Первые доказательства роли вилочковой железы в иммунных и других функциях были полу­чены после тимэктомии, выполненной на животных разных видов в неонатальный и постнатальный периоды. Преимуществен­ный метод извлечения тимуса — оперативный, однако использу­ют и медикаментозное подавление его функции применением резерпина, уретана, диэтилстилбэстролдипропионата, В-гиповитаминоза и др.

Неонатальная тимэктомия, произведенная в течение 2 сут. пос­ле рождения, не вызывает особых изменений непосредственно после ее выполнения. Нормальное развитие оперированных жи­вотных продолжается до молочного периода и перехода на обыч­ное кормление. В этот период развивается так называемый Wasting-синдром (синдром истощения), главным клиническим проявлением которого оказывается отставание в росте по сравне­нию с интактными животными того же помета. Синдром истоще­ния наблюдается у мышей, крыс, морских свинок, хомяков и со­бак, подвергнутых неонатальной тимэктомии. Такие животные сонливы, малоподвижны, с неуверенной походкой. Они принима­ют вынужденные положения (кифоз), у них наблюдаются полная редукция подкожной жировой ткани, дегенеративные изменения кожи, выпадение волос, кахексия и летальный исход.

Не исключена возможность того, что синдром истощения на­ходится в прямой зависимости от гуморальной функции вилочковой железы и является следствием нарушения ее взаимоотноше­ний с остальными эндокринными железами.

В 60-е годы XX столетия для более полного выявления роли тимуса были получены инбредные линии лабораторных мышей и крыс с мутантной атимией. У них отсутствует оволосение, масса тела таких животных составляет 64—68 % от нормально развитых, у них меньшая продолжительность жизни и высокая смертность. Для мутантной атимии характерна лимфоидная деплеция в тимус-зависимой сфере. Т-лимфоциты зачастую отсутствуют или их чис­ло минимально: последний факт связывают с трансплацентарным проникновением гуморального фактора из материнской вилочковой железы или с проникновением Т-лимфоцитов матери. Клеточнозависимый иммунитет у таких животных во всех его прояв­лениях отсутствует.

Экспериментальные данные по тимэктомии у взрослых живот­ных свидетельствуют о том, что эта операция не сопровождается непосредственными изменениями иммунной реактивности, они начинают проявляться через более продолжительный период вре­мени. У взрослых животных вилочковая железа содействует разви­тию адекватной популяции долгоживущих иммунокомпетентных клеток, иммунный же дефицит после тимэктомии проявляется лишь тогда, когда число этих клеток уменьшается вследствие их естественного отмирания в пределах продолжительности жизни. Расстройства функции вилочковой железы могут быть следствием либо самостоятельного, либо сопутствующего заболевания. Пер­вичные повреждения могут быть вызваны врожденной аплазией или гипоплазией, сопровождающимися генерализованной лимфоидной деплецией, гипотрофией периферических лимфоидных ор­ганов, угнетением иммунных реакций клеточного типа и антителогенеза. При этом затруднена нормальная дифференцировка стволовых клеток в Т-лимфоциты.

Генез первичных иммунодефицитных состояний тимусного происхождения могут определять различные факторы: генетичес­кий компонент; соматическая мутация в онтогенезе и постнатальном развитии вследствие разнообразных факторов внешней сре­ды. Симптоматику, аналогичную Wasting-синдрому, наблюдают у животных-гипотрофиков в раннем постнатальном периоде. Низ­кая исходная масса гипотрофичных поросят, цыплят, щенков но­рок (50—60 % от нормотрофиков), отставание в росте и развитии (ягнята, телята, поросята, щенки норок) сочетается у этих живот­ных с повышенной заболеваемостью и смертностью.

Установлено, что масса тимуса у гипотрофичных поросят в 9,7 раза меньше, чем у нормотрофиков; удельная концентрация Т-лимфоцитов в тимусе на 76 % ниже, чем у здоровых, а коэффи­циент субпопуляций (Т-хелперы, Т-супрессоры) снижен более чем в 3 раза. В тимусе сокращено число клеточных элементов, продуцирующих тимический фактор.

Недостаточность тимуса у гипотрофичных телят прояв лялась наряду с лимфопенией падением числа Т-лимфоцитов в крови на 57 %, в то время как количество низкодифференцированных, «ну­левых» лимфоцитов на 15 % превышало аналогичный показатель у нормотрофиков. Снижена функциональная активность Т-клеток. Судя по бактерицидности сыворотки крови и активности сыворо­точных бета-лизинов, неспецифическая защита организма у боль­ных телят ингибирована.

У ягнят при гипотрофии были снижены относительно нормо­трофиков такие показатели, как уровень общего белка в сыворотке крови, его альбуминовой и глобулиновой фракций. Пониженной были также бактерицидная и лизоцимная активность сыворотки крови, фагоцитарная активность нейтрофилов.

При гипотрофии щенков норок клеточного содержания отме­чено значительное уменьшение массы лимфоидных органов, осо­бенно тимуса, на месте которого иногда обнаруживаются лишь со­единительнотканные тяжи с вкраплениями долек паренхимы; до 58—65 % была снижена удельная масса кариоцитов в костном моз­ге, тимусе, лимфоузлах. В периферической крови общее число лимфоцитов было снижено на 29,7 % по сравнению с данными показателями у нормотрофиков. Ингибированными были и пока­затели неспецифической защиты.

У цыплят-гипотрофиков иммунодефицит характеризовался уменьшением числа лейкоцитов в крови, снижением удельного количества Т-лимфоцитов, падением величины пролиферативного пула клеток крови, бурсы Фабрициуса, тимуса, селезенки на 11—13%. У них по сравнению с нормотрофиками существенно уменьшена ширина коркового и мозгового веществ, а также кле-точность в тимусе и бурсе.

Таким образом, у всех исследованных животных с признаками гипотрофии в раннем постнатальном периоде выявляли иммун­ный дефицит, в основном тимического происхождения.

Подтверждением сказанному может служить возможность кор­рекции иммунодефицитного состояния у гипотрофиков путем применения им препаратов тимуса (тималин, тимоген). Восста­новление основных показателей функционирования системы им­мунитета сочеталось в этих случаях со стимуляцией роста, резким снижением заболеваемости и летальности.

Отсутствие Т-клеток может быть следствием и других врожден­ных дефектов: дисплазии тимуса (дезорганизация ткани вилочковой железы), неправильного развития в эмбриогенезе третьего и четвертого эндодермальных карманов.

Дефицит системы В-лимфоцитов. В раннем постнатальном пе­риоде, при переходе от колострального (от лат. colostrum — моло­зиво) иммунитета к синтезу собственных иммуноглобулинов на­блюдают физиологическую гипогаммаглобулинемию. Установле­но, что слизистая оболочка тонкого кишечника телят, ягнят про­ницаема для иммунных глобулинов в первые 2 сут после рождения, а у поросят — первые 4 сут. Содержание иммуноглобу­линов достигает максимального значения в первые сутки питания молозивом матери, сохраняется на сравнительно высоком уровне около двух первых недель жизни.

Физиологическая гипогаммаглобулинемия может трансформи­роваться в патологичную в тех случаях, когда молозиво матери обеднено иммунными глобулинами, фагоцитирующими элемен­тами, проникающими в кровоток новорожденного, либо при его физиологической незрелости.

Наследственно обусловленную форму дефицита В-лимфоци­тов наблюдают при так называемой болезни Брутона. У больного выявляют гипогаммаглобулинемию, обусловленную блокадой образования плазматических клеток всех типов. Поэтому воз­можно падение прежде всего уровня IgG, IgA, IgM. Заболевание проявляется по мере исчезновения переданных через плаценту и молозиво материнских антител. Болезнь развивается вследствие наличия рецессивного гена, связанного с половой Х-хромосомой. Функции Т-клеток сохранены, однако больные весьма чув­ствительны к бактериальной инфекции, особенно кожи и дыха­тельных путей.

Селективные формы дефицита иммуноглобулинов. Дефицит IgA передается от родителей потомкам как рецессивный, а иногда до­минантный признак с повышенной чувствительностью слизистых оболочек к бактериальной флоре. Недостаточность синтеза IgA и IgG и сохранение уровня IgM развиваются на конечном этапе дифференцировки В-клеток в плазматические. Дефицит IgM и IgG сопряжен с высокой чувствительностью животных к гноерод­ной микрофлоре.

Иммунодефицита могут быть обусловлены дисфункцией плаз­матических клеток. В этих случаях синтез иммуноглобулинов од­них классов (IgG) подавлен при значительном возрастании произ­водства других (IgM). Страдание передается по наследству как сцепленный с полом рецессивный признак.

Комбинированный иммунодефицит. Комбинированный дефицит развивается при сочетанном поражении Т- и В-систем иммуните­та. Иммунодефицит подобного типа встречаются чаще, чем се­лективные. Они характеризуются отсутствием плазматических клеток в костном мозге, недоразвитием тимуса и лимфоузлов, ко­торые состоят почти исключительно из эпителиальной и соедини­тельной ткани или клеток ретикулума. Отмечается количествен­ный и функциональный дефицит Т-клеток. Содержание В-клеток может быть в норме или даже превышать ее, но они не способны секретировать иммуноглобулины в достаточном количестве, уров­ни основных трех классов снижены. Это не относится к IgG у но­ворожденных при питании молозивом и молоком. У страдающих комбинированным иммунодефицитом животных повышена вос­приимчивость к бактериальной, вирусной, грибной инфекциям. Наиболее подвержены воспалительным процессам слизистые обо­лочки, в связи с чем у больных регистрируются желудочно-кишеч­ные расстройства и бронхопневмонии.

Известны три различные генетические основы этих заболева­ний: рецессивный дефект, связанный с половой Х-хромосомой; аутосомно-рецессивный дефект фермента аденозиндезаминазы и аутосомно-рецессивный дефект с неизвестным первичным дей­ствием.

Иммунодефициты, вызванные нарушением систем, функциональ­но сопряженных с иммунной системой. Презентация антигенных субстанций лимфоцитам может быть нарушена недостаточной ак­тивностью вспомогательных А-клеток — макрофагов и биологи­чески активных веществ, где основное значение имеет компле­мент.

Дефицит мононуклеарной фагоцитирующей системы опреде­ляется расстройством способности вспомогательных клеток к лизису бактерий, процессингу и презентации антигенов Т- и В-лимфоцитам. Одна из форм дефицита системы фагоцитов описа­на как синдром Чедиака—Хигаси. Он проявляется дефектами структуры лизосом, замедленным образованием фаголизосом, неэффективным лизисом бактерий. У больных людей наблюдают развитие хронических бактериальных инфекций, альбинизм из-за дефектов пигментных клеток сетчатки глаза и кожи, фотофо­бию. В раннем постнатальном периоде летальность высока. Сходные признаки синдрома обнаружены у крупного рогатого скота, норок, мышей.

Дефекты системы комплемента. Описаны генетические дефекты почти всех 9 компонентов системы комплемента и 5 ингибиторов.

Самый распространенный из наследственных дефектов компле­мента—недостаточность ингибитора С1, наследуемого по аутосомно-доминантному типу. Эта недостаточность связана с разви­тием ангионевротического отека, или болезнью Клинке. Дефицит комплемента выявлен также у экспериментальных животных: у инбридных мышей DBA/2 отсутствует С5, у некоторых кроли­ков — С6.

Недостаточность отдельных компонентов системы комплемен­та приводит к выпадению или ослаблению ее основных биологи­ческих эффектов: регуляции и индукции иммунного ответа; сти­муляции хемотаксиса нейтрофилов; иммунного прилипания — начального этапа фагоцитоза; иммунного цитолиза; опсонизации бактерий; реакции конглютинации; активизации кининовой свер­тывающей системы; индукции воспалительной реакции.

Описанные иммунодефицита первичного происхождения не претендуют на охват всех врожденных дефектов иммунитета, особенно в силу их малой изученности у представителей животного мира.

 

ВТОРИЧНЫЕ ИММУНОДЕФИЦИТЫ

 

Вторичные иммунодефицита возникают у животных в постнатальном периоде под влиянием многочисленных иммунодепрессантов. Иммунодепрессивные заболевания характеризуются чаще вcero нарушением генеза и функций иммуноцитов и неспецифических факторов защиты. Связь между состоянием иммунной системы и патогенным агентом носит весьма сложный характер. Вторичные иммунодефицита могут быть результатом неполноценного питания животных, инфекций и инвазий, неблагоприятных условий содержания, воздействия химических и цитотоксических веществ, физических факторов, болезней обмена веществ и многих других причин.

Бактериальные и вирусные инфекции могут быть как следствием, так и причиной вторичных иммунодефицитов. При острых инфекционных заболеваниях (вирусный гепатит, паратиф, чума, парагрипп и др.) как у человека, так и у животных иммунодефицитные состояния имеют общие закономерности: у подавляющего большинства больных прежде всего страдает Т-система иммунитета со снижением репродукции Т-активных клеток-хелперов, нарушением дифференцировки популяций, снижением гиперчувствительности замедленного типа. В меньшей степени поражается В-система иммунитета.

Выявлено, что при сочетании двух и более инфекционных заболеваний иммунодефицит более резкий, чем при моноинфекции. При развитии иммунодефицита на фоне уже имевшегося врожденного или приобретенного иммуннодефицита показатели иммунитета и неспецифических факторов защиты снижаются до минимума, заболевание приобретает тяжелое течение с нередким летальным исходом.

Особый интерес к состоянию резистентности организма и вторичному иммунодефициту проявляют исследователи вирусных инфекций сельскохозяйственных животных. Так, установлен факт давления клеточного звена иммунитета при парагриппе, чуме иней, инфекционной анемии лошадей, чуме собак, болезни Ма­река у птиц. При болезни Ауески ингибирована миграция макрофагов, ослаблена гиперчувствительность замедленного типа, поражена Т-система иммунитета. Для африканской чумы свиней характерны повышенная бласттрансформация, торможение миграциии лейкоцитов, усиленный антителозависимый цитолиз; при вирусном гастроэнтерите телят подавлен антителогенез; при трансмиссивном гастроэнтерите свиней заторможена пролиферация лейкоцитов.

Выявлено, что многие вирусы — возбудители инфекционных болезней обладают тропизмом к лимфоидным клеткам, прежде то к макрофагам, что обеспечивает их размножение и диссеминацию. Взаимодействие вирусов с лимфоидной тканью играет центральную роль в патогенезе вирусных болезней с системной патологией.

Таким образом, развитие вирусной инфекции различного типа течения или даже поствакцинального процесса в животном организме может существенно менять его иммунный статус, определять вирусиндуцированный иммунодефицит.

Иммунодефицита при гельминтозных и протозойных инвазиях изучались на экспериментальных моделях и у животных разных видов со спонтанно возникавшими болезнями. В опытах показано, что организм хозяина, инвазированного паразитом, дает сниженный иммунный ответ на гетерологичные антигены. Иммунодепрессивный эффект был установлен при заражении подопытных животных простейшими (Babesia microti, Toxoplasma gondii, Trypanasoma brucei) и гельминтами (Fasciola hepatica, Trichinella spiralis, Schistosoma mansoni). У зараженных животных была noдавлена выработка антител и ингибирован клеточный иммунитет, который оценивали по отторжению кожных аллотрансплантатов, ответу на кожно-сенсибилизирующие агенты и на митогены Т-клеток.

Механизмы иммунодефицита паразитарной этиологии изучены далеко не полностью. Полагают, что здесь участвуют многочисленные факторы, имеющие место в системах хозяин — паразит. Так, в патогенезе развивающегося вторичного иммунодефицита при паразитозах имеют значение неспецифические супрессорные клетки, обнаруживаемые в селезенке мышей, инвазированных трипаносомами. Эти клетки способны подавлять ответ нормальных клеток селезенки на митогены как Т-, так и В-клеток. Функции макрофагов животных с экспериментальной малярией существенно нарушены. Они не способны полноценно предъявлять антигены. Малярия и трипаносомоз сопровождаются резким повышением уровня иммуноглобулинов, из чего делается вывод о поликлональных активаторах лимфоцитов паразитарной природы. Длительная поликлональная активация В-клеток приводит к прогрессирующему то уменьшению антигенчувствительных В-клеток и ослаблению гуморального ответа на гетерологичные антигены. Экскреторные и секреторные продукты печеночной двуустки цитотоксически действуют на лимфоциты. Сыворотка крови животных, зараженных нематодой Trichinella spiralis, способна агглютинировать, а затем и убивать клетки лимфоузлов. Триптофол, синтезируемый Tripanosoma gambiense, способен угнетать выработку антител у подопытных животных.

Некоторые паразиты ингибируют иммунный ответ, изменяя физиологические функции хозяина. Так, они могут усиливать выработку кортикостероидных гормонов. В опытах установлено, что введение стероидных препаратов способствует более интенсивному заражению гельминтами. Отмечены даже случаи смертельного исхода после заражения животных Strongyloides stercoralis, получавших кортизон.

При естественно текущей и искусственно вызванной Fasciola hepatica инвазии крупного рогатого скота, при хастилезиозе и желудочно-кишечных стронгилятозах овец, трихинеллезе отмечено угнетение Т-клеточного иммунного ответа. Инвазия овец Strongyloides papiloides приводит к снижению массы и клеточное-лимфоидных органов, резкой активации Т-супрессоров.

Таким образом, в основе иммунологической недостаточности, вызываемой паразитарной инвазией, лежат самые разнообразные механизмы. Это избыточная активность клеток-супрессоров, наличие общих антигенных детерминант у паразита и хозяина, нарушение функций макрофагов, поликлональная активация В-клеток, паразитарные факторы, угнетающие лимфоцитоз. Для выявления целостной картины ингибирующего влияния возбудителей паразитарных болезней предстоит выяснить еще многое. Однако уже очевидна повышенная восприимчивость инвазированных животных к инфекциям, вызываемым другими возбудителями. Вакцинация против гетерологичных инфекционных агентов у них может быть менее эффективной. Они более склонны к развитию «спонтанных» опухолей и опу-холей, вызванных вирусами и канцерогенными агентами. Орга­зм хозяина утрачивает способность эффективно защищаться против гомологичного паразита. Этой толерантностью определяется хроническое течение многих инвазионных болезней.

 

АЛЛЕРГИЯ

 

Аллергия (от греч. allos — иной, ergon — действие) — повышен­ная, а часто и качественно измененная реакция организма на по­вторное попадание вещества аллергенной или гаптенной приро­ды. Термин «аллергия» был предложен Пирке (Pirquet) в 1906 г. Аллергия рассматривается как одна из форм патологии иммуните­та, поскольку аллергия и иммунитет обеспечиваются одним и тем же аппаратом — лимфоидной системой.

Иммунологические и аллергические реакции направлены на поддержание антигенного гомеостаза, элиминацию чужеродного агента. Вместе с тем существуют некоторые отличия реакции на повторное попадание аллергена в организм от иммунного ответа на антиген. Так, аллергия может быть вызвана такими факторами (холод, ультрафиолетовые лучи, ионизирующая радиация), влия­ние которых на организм не сопровождается иммунными реакци­ями.

Аллергические реакции протекают стадийно с непременной деструкцией крови, стенок сосудов, тканевых элементов, что в принципе отличает аллергию от иммунологической реактивности. Аллергия развивается с преимущественным участием иммуногло­булинов класса Е, редко вовлекаемых в механизм формирования иммунитета. С помощью аллергических реакций в виде анафилак­тического шока, воспаления, отека и др. организм быстрее осво­бождается от антигена (аллергена), чем при иммунном ответе.

Аллергические реакции возникают в животном организме под влиянием аллергенов — веществ антигенной или гаптенной при­роды при их повторном попадании в организм. Аллергия может развиваться также в результате воздействия некоторых физичес­ких факторов (тепло, холод, ионизирующая радиация, ультрафио­летовое облучение и др.).

Природа аллергенов разнообразна. Они могут поступать в орга­низм извне (экзогенные) и образовываться в его внутренних сре­дах (эндогенные).

К экзоаллергенам относят:

œ инфекционные (бактерии, вирусы, грибы);

œ паразитарные (простейшие, половозрелые и личиночные фор­мы гельминтов, яды насекомых);

œ лекарственные (сыворотки, вакцины, антибиотики, некоторые химиопрепараты);

œ пищевые (природа различна, действие опосредованно индиви­дуальной чувствительностью);

œ вдыхаемые (пыльца растений, пыль улиц, помещений, складов, часто включающая в свой сложный состав микроскопических кле­щей, чешуйки эпидермиса, частицы волоса, шерсти, пера птиц);

œ некоторые физические и химические (синтетические моющие средства, пестициды, гербициды и др.) факторы.

К эндоаллергенам относят поврежденные структуры клеток и тканей собственного организма. Они приобретают свойства аллер­генов под влиянием многих факторов внешней среды (микроорга­низмы, химические соединения, физическое воздействие).

Аллергены попадают в организм энтерально, парентерально, через дыхательные пути, после аппликации на кожу, слизистые оболочки, трансплацентарно, путем общего или локального воз­действия физических факторов.

Сенсибилизация и десенсибилизация. Повышенная чувствитель­ность к аллергену проявляется только после повторного контакта с ним. Первичный контакт аллергена с иммунокомпетентными клетками приводит к выработке антител — иммуноглобулинов и фиксации их на клетках-мишенях. Возникает состояние повы­шенной чувствительности к повторному попаданию антигена. Этот процесс приобретения животным гиперчувстительности к повторному контакту с аллергеном получил название сенси­билизация. Например, в случае реинъекции антигена он вступает уже в реакцию с образованными в организме антителами. Клетки (тучные, базофилы) подвергаются деструкции, освобожда­ют биологически активные вещества, определяющие клиничес­кую картину той или иной аллергической реакции. Период макси­мальной чувствительности к повторному контакту с аллергеном наступает спустя 12—14 дней после его первичного попадания в организм.

Сенсибилизировать организм можно активно и пассивно. Ак­тивная сенсибилизация возникает в ответ на попадание в орга­низм аллергена. Он должен поступать во внутреннюю среду, ми­нуя барьеры (слизистая оболочка, кожа), или за счет повышения их проницаемости. Пассивная сенсибилизация может быть созда­на путем введения сыворотки крови с готовыми антителами от до­нора реципиенту или сенсибилизированных В- или Т-лимфоци-тов. Адоптивным (от англ, adoptive — приемный, воспринятый) переносом иммунокомпетентных клеток можно моделировать по­вышенную чувствительность немедленного (В-клетки) или замед­ленного (Т-клетки) типа.

Десенсибилизация — снятие повышенной чувстви­тельности к повторному введению разрешающей дозы антигена путем предварительного введения сенсибилизированному живот­ному небольших доз антигена. Десенсибилизацию (по Безредка) проводят при необходимости повторного введения гипериммун­ных сывороток с профилактической или лечебной целью, либо при вакцинопрофилактике. Малые дозы антигена связывают ан­титела, предупреждают деградацию клеток, выделение биологи­чески активных веществ, развитие клинической симптоматики.

Снижение негативных последствий аллергии возможно путем применения препаратов, ингибирующих протеолитические фер­менты, инактивирующих медиаторы аллергии — гистамин, серотонин и др. С целью коррекции возникающих расстройств боль­ным животным применяют наркотики, тормозящие активность центральной нервной системы, спазмолитики для снижения бронхоспазма при бронхиальной астме и др.

Гипосенсибилизацию, десенсибилизацию используют и как метод иммунотерапии аллергических заболеваний путем последо­вательного введения увеличивающих доз антигена. Длительное применение стандартизированных пыльцевых, эпидермальных, пылевых и пищевых аллергенов индуцирует иммунологическую толерантность к антигену, чем снимают или снижают симптомы основного заболевания аллергической природы.

 

ТИПЫ АЛЛЕРГИЧЕСКИХ РЕАКЦИЙ

 

По скорости и интенсивности проявления клинических при­знаков после повторной встречи антигена (аллергена) с организ­мом аллергические реакции подразделяют на два типа. Первый тип аллергических реакций — гиперчувствительность немедлен­ного типа (ГЧНТ), синонимы — повышенная чувствительность немедленного типа, реакция анафилактического типа, реакция химергического типа, В-зависимые реакции. Эти реакции харак­терны тем, что антитела в большинстве случаев циркулируют в жидких средах организма и развиваются в течение нескольких ми­нут после повторного попадания антигена. Второй тип аллерги­ческой реакции — гиперчувствительность замедленного типа (ГЧЗТ), синонимы — повышенная чувствительность замедленного типа, реакция химергического типа, Т-зависимые реакции. Эта форма аллергии характерна тем, что антитела фиксированы на мембране лимфоцитов и представляют собой рецепторы после­днего. Клинически выявляется спустя несколько часов или суток после контакта сенсибилизированного организма с аллергеном.

Гиперчувствительность немедленного типа (ГЧНТ). Аллергические реакции немедленного типа протека­ют с участием образовавшихся в ответ на антигенную нагрузку антител в циркулирующих гуморальных средах. Повторное попа­дание антигена приводит к его быстрому взаимодействию с цир­кулирующими антителами, образованию комплексов антиген-антитело.

По характеру взаимодействия антител и аллергена выделяют три типа реакций немедленной гиперчувствительности:

™ первый тип — реагиновый, включающий анафилактичес­кие реакции. Реинъецируемый антиген встречается с антителом (IgE), фиксированным на тканевых базофилах. В результате дегрануляции освобождаются и поступают в кровь гистамин, гепарин, гиалуроновая кислота, калликреин, другие биологически активные соединения. Комплемент в реакциях этого типа участия не принимает. Общая анафилактическая реакция проявляется ана­филактическим шоком, местная — бронхиальной астмой, сенной лихорадкой, крапивницей;

™ второй тип — цитотоксический, характерный тем, что антиген сорбирован на поверхности клетки или представляет со­бой какую-то ее структуру, а антитело циркулирует в крови. Обра­зующийся комплекс антиген—антитело в присутствии компле­мента обладает прямым цитотоксическим эффектом. Кроме того, к цитолизу причастны активированные иммуноциты-киллеры, фагоциты. Цитолиз возникает при введении больших доз антире­тикулярной цитотоксической сыворотки. Цитотоксические реак­ции могут быть получены по отношению к любым тканям живот­ного-реципиента, если ему ввести сыворотку крови донора, пред­варительно иммунизированного к ним;

™ третий тип — реакции типа феномена Артюса. Описан автором в 1903 г. у предварительно сенсибилизированных лошадиной сывороткой кроликов после подкожного введения им того же антигена. На месте инъекции развивается острое некротизирующее воспаление кожи. Основным патогенетическим меха­низмом служит образование комплекса антиген + антитело (IgG) с комплементом системы. Сформировавшийся комплекс должен быть крупным — не менее 19 S (единиц Сведберга по скорости се­диментации), иначе он не выпадает в осадок. При этом важное значение имеет тромбоцитарный серотонин, повышающий про­ницаемость сосудистой стенки, способствующий микропреципи­тации иммунных комплексов, отложению их в стенке сосудов и других структурах. При этом в крови всегда есть небольшое ко­личество IgE, фиксированного на базофилах и тучных клетках. Иммунные комплексы привлекают к себе нейтрофилы, фагоци­тируя их, они выделяют лизосомальные ферменты, которые, в свою очередь, определяют хемотаксис макрофагов. Под влияни­ем освобождаемых фагоцитирующими клетками гидролитичес­ких ферментов (патохимическая стадия) начинаются повреждения (патофизиологическая стадия) сосудистой стенки, разрыхление эндотелия, тромбообразование, кровоизлияния, резкие наруше­ния микроциркуляции с очагами некротизации. Развивается вос­паление.

Кроме феномена Артюса проявлением аллергических реакций этого типа может служить сывороточная болезнь — симптомокомплекс, возникающий после парентерального введения в орга­низм животных и человека сывороток с профилактической или лечебной целью (антирабической, противостолбнячной, проти­вочумной и многих других); иммуноглобулинов; переливаемой крови, плазмы; гормонов (АКТГ, инсулина, эстрогенов и др.); некоторых антибиотиков, сульфаниламидов; при укусах насеко­мых, выделяющих ядовитые соединения. Основой формирования сывороточной болезни являются иммунные комплексы, воз­никающие в ответ на первичное, однократное попадание антиге­на в организм.

Свойства антигена и особенности реактивности организма вли­яют на тяжесть проявления сывороточной болезни. При попада­нии чужеродного антигена у животного наблюдают три типа отве­та: 1) антитела вовсе не образуются и заболевание не развивается; 2) происходит выраженное образование антител и иммунных ком­плексов. Клинические признаки возникают быстро, по мере нара­стания титра антител — исчезают; 3) слабый антителогенез, недо­статочная элиминация антигена. Создаются благоприятные усло­вия для длительной персистенции иммунных комплексов и их цитотоксического эффекта.

Симптоматика характерна выраженным полиморфизмом. На­чало острого клинического проявления часто определяют по по­вышению температуры на 1,5—2°С, региональной или генерали­зованной лимфоаденопатии, характерным поражениям кожи (эритема, крапивница, отек) и болезненности суставов. В более тяжелых случаях наблюдают острый гломерулонефрит, нарушение функции миокарда, аритмию, рвоту, диарею.

В большинстве случаев через 1—3 нед клинические признаки исчезают и наступает выздоровление.

Видовым проявлением аллергических реакций подобного рода может служить петехиальная горячка лошадей, характеризующая­ся множественными кровоизлияниями в коже, слизистых оболоч­ках внутренних органов с образованием инфильтратов. Аллерги­ческие бронхоальвеолиты нередко встречаются у лошадей в город­ских условиях.

Общий патогенез аллергических реакций немедленного типа. Ал­лергические реакции немедленного типа, различные по внешним проявлениям, имеют общие механизмы развития. В генезе гипер­чувствительности различают три стадии: иммунологическую, био­химическую (патохимическую) и патофизиологическую.

Иммунологическая стадия начинается с первого контакта ал­лергена с организмом. Попадание антигена стимулирует макрофа­ги, они начинают освобождать интерлейкины, активизирующие Т-лимфоциты. Последние, в свою очередь, запускают процессы синтеза и секреции в В-лимфоцитах, превращающихся в плазмоциты. Плазмоциты при развитии аллергической реакции первого типа продуцируют преимущественно IgE, второго типа — IgG1,2,3, IgM, третьего типа — преимущественно IgG, IgM.

Иммуноглобулины фиксируются клетками, на поверхности ко­торых имеются соответствующие рецепторы, — на циркулирую­щих базофилах, тучных клетках соединительной ткани, тромбоци­тах, клетках гладких мышц, эпителия кожи и др. Наступает пери­од сенсибилизации, повышается чувствительность к повторному попаданию того же аллергена. Максимальная выраженность сенсибилизации наступает спустя 15—21 день, хотя реакция может проявляться и значительно раньше.

В случае реинъекции антигена сенсибилизированному живот­ному взаимодействие аллергена с антителами будет происходить на поверхности базофилов, тромбоцитов, тучных и иных клеток. Образуются иммунные комплексы, меняющие свойства мембран клеток. Когда аллерген связывается более чем с двумя соседними молекулами иммуноглобулинов, нарушается структура мембран, активируется клетка, начинают выбрасываться ранее синтезиро­ванные или вновь образованные медиаторы аллергии. Причем из клеток выделяется только около 30 % содержащихся там биологи^ чески активных веществ, так как они выбрасываются только через деформированный участок мембраны клеток-мишеней.

В биохимическую (патохимическую) ста­дию изменения, происходящие на клеточной мембране в иммунологическую фазу вследствие образования иммунных комплексов, запускают каскад реакций, начальным этапом которых явля­ется, по-видимому, активация клеточных эстераз. В результате ос­вобождается и вновь синтезируется ряд медиаторов аллергии. Медиаторы обладают вазоактивной и контрактильной активнос­тью,


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.077 с.