Пещера Баскунчакская как объект различного рода исследований — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Пещера Баскунчакская как объект различного рода исследований

2021-05-28 42
Пещера Баскунчакская как объект различного рода исследований 0.00 из 5.00 0 оценок
Заказать работу

Введение

 

Пещеры представляют собой элементы неживой природы, специфический подземный ландшафт, который существовал задолго до человека и имеет право на существование в настоящем как компонент ландшафтной оболочки планеты. Это среда обитания специфической фауны, часть из которой живет в них постоянно (троглобионты), а часть временно (троглофилы). Из-за стабильности климатических условий, сохраняющихся в полостях в течение длительного времени, среди пещерной фауны много эндемичных видов (http://www.ecocave.ru).

Пещеры являются геологическими памятниками природы; в которых можно изучать естественные обнажения горных пород, отбирать образцы для геологических, инженерно-геологических и геофизических исследований, прослеживать внутреннюю структуру залегания горных пород, их изменчивость, тектонические нарушения, ископаемую фауну и др. В пещерах открыт естественный доступ к водоносному горизонту, областям формирования и питания источников, питьевых и промышленных вод, существует возможность изучения формирования химического состава подземных вод. Пещеры имеют палеогеографическое значение: в них сохраняются следы давно минувших эпох, которые, как правило, уничтожены на поверхности земли; на основании изучения рыхлых отложений пещер, их строения и ледяных образований в них можно судить об истории развития не только пещеры, но и окружающей её местности. Многие пещеры имеют реакрационное значение и используются в качестве туристических объектов

На территории Астраханской области, в районе озера Баскунчак, находятся около 25 пещер карстового происхождения. Самая крупная и наиболее посещаемая из них, это пещера Баскунчакская (http:// www.ecocave.ru).

Поэтому целью работы стало исследование микробиологического пейзажа грунта пещеры Баскунчакская, для изучение рекреационного влияния, оказываемого на нее, как на объект туристического значения. Для осуществления целей исследования были поставлены следующие задачи:

1. определение численности и видового состава сапрофитной микрофлоры грунта пещеры Баскунчакская;

2. Определение санитарного состояния грунта пещеры Баскунчакская (на основе определения БГКП)


Глава 1 Литературный обзор

Факторы уязвимости пещер

 

Особенностью пещер является длительное время их образования (от тысяч до миллионов лет); они имеют разное происхождение, неодинаковую морфологию и характеризуются относительно стабильным режимом климатических параметров, устойчивостью происходящих в них процессов. В тоже время многие компоненты пещер отличаются повышенной ранимостью, у них почти полностью отсутствует способность восстанавливаться после интенсивного антропогенного воздействия (нагрузок). К сожалению, пещеры, в силу своей таинственности, необычности и слабой изученности являются местом постоянного паломничества разных слоев населения (чаще молодёжи). Повышает интерес к пещерам и широкая реклама наиболее посещаемых экскурсионных пещер. Неуправляемый поток посетителей и "исследователей", не вооруженных знаниями об особенностях и ценности пещер, не владеющих методами их научного изучения, способен вызвать гораздо большие изменения климата пещер, строения её элементов, изменение состава флоры и фауны, чем значительные природные катаклизмы на поверхности земли (такие, например, как четвертичное оледенение). При нерегулируемом посещении это воздействие особенно усугубляется в связи с ограниченными объемами пещер, как правило, однозначными маршрутами движения групп, постоянными местами отдыха, навески снаряжения, разбивки подземных бивуаков, приготовления пищи, складирования отбросов, отправления естественных надобностей. Результатом таких посещений является неизбежное нарушение эстетического состояния пещер и подземных ландшафтов, скопления отбросов и нечистот, закопчённые стены и потолки, задымление галерей, скопление экологически вредных веществ из оставленных сухих электрических элементов, отработанного карбида кальция (используется для заправки ацетиленовых фонарей), продуктов сгорания топлива и нефтепродуктов, затаптывание и захватывание натечных и кристаллических образований, выламывание их, т.е. совокупное биологическое, вещественное, химическое, эстетическое и климатическое загрязнение полостей. Следует особо подчеркнуть, что микрофлора и бактерии в пещерах развиты незначительно (по сравнению с внешними условиями) и приспособлены к практически стабильному климатическому режиму в мало изменяющихся фоновых гидрологических и гидрохимических условиях. Вследствие этого они не способны быстро видоизменяться и приспосабливаться к резкому изменению условий, не в состоянии перерабатывать большое количество привнесенной извне органики и минеральных веществ (часто для них непривычных), не имеют развитых защитных функций и потому не могут очищать окружающую среду пещер при загрязнении воды и отложений и выживать при конкурирующем размножении на отбросах поверхностных видов микроорганизмов. В результате, они вымирают при энергичном размножении поверхностных микроорганизмов и грибов. Пещеры имеют относительно стабильный режим протекающих в них процессов и кажутся хорошо изолированными от внешних воздействий. Тем не менее они достаточно хорошо связаны с поверхностью посредством множества трещин, пронизывающих карстовый массив, и узких ходов и каналов, функции которых (проводники воды, воздуха, снега и др.) из-за меняющихся условий на поверхности (вырубка леса, распашка территории, выпас скота, откачка воды из скважин, строительство плотин на внешних водотоках, разработка карьеров и др.) могут нарушаться. Это неизбежно приводит к изменению ранее установившихся равновесных условий в пещерах. Изменяются условия протекания различных процессов, режим обводнённости полостей, климат, условия обитания фауны и флоры, роста минеральных агрегатов, заполнения пещер отложениями и т.д. Потому в общем случае охранная зона пещер должна включать не только входное отверстие полости, но также по меньшей мере всю ту территорию над пещерой, которая оконтуривается сглаженной охватывающей линией с учетом всех выступающих частей на плане пещеры (или группы пещер). При оконтуривании пещер с подземными водотоками необходимо в охраняемую часть включать области питания этих водотоков (что, к сожалению, далеко не всегда возможно). Охраняемая зона является индивидуальной для разных видов и типов пещер и разрабатывается специалистами для каждого конкретного случая.

Кроме высокой чувствительности к изменению внешней среды, а также легкой ранимости и уязвимости пещер при вмешательстве человека в их внутреннюю среду отмечается и слабая способность пещер к адаптации к человеческому влиянию. Оно выражается в незначительной емкости (способность объекта переносить воздействия не разрушаясь) по отношению к человеку многих элементов пещерного ландшафта. Это выражается и в слабой способности к восстановлению нарушенных пещерных и карстовых ландшафтов.

Любая деятельность человека, приложенная к пещерам непосредственно или опосредованно, всегда негативно сказывается на состоянии их внутренней среды (человек чуждый элемент в среде и экосистеме пещер). Сама геологическая среда пещер (порода) достаточно устойчива к человеческому присутствию и в большинстве случаев (при некоторых ограничениях) может эксплуатироваться в довольно широких пределах (в данном случае под эксплуатацией понимаются в основном широкомасштабные посещения). По иному обстоит дело с климатом, гидрологией и экосистемами пещер.

Экосистемы формировались в течение весьма продолжительного времени, причем все изменения в пещерах происходили постепенно и в очень смягченной форме, чему способствовала существенная изолированность внутренних частей пещер от внешнего мира. Это позволяло организмам, населяющим пещеры, приспосабливаться к внешним изменениям среды, либо менять среду обитания. Изменения, происходящие в настоящее время, с геологической точки зрения, происходят мгновенно и никакие организмы не в состоянии приспособиться к ним, тем более такие консервативные как пещерные.

Посещение пещер изменяет многие их климатические параметры. Это особенно заметно при низких фоновых температурах в полостях. Факел тепла, выделяемый каждым человеком, изменяет температуру и влажность воздуха в непосредственной близости от него. Чем больше группа, тем больше влияние она оказывает на климат полости. Во многих случаях это не страшно. Но в пещерах с ажурными ледяными кристаллами и рисунками древнего человека влияние группы людей может оказаться существенным, а иногда и чрезвычайно сильным.

Пагубное влияние больших групп сказывается и на натечном и минеральном убранстве полостей. Чем больше группа, тем труднее ей управлять и тем большая вероятность того, что кто-нибудь сойдет с маркированной тропы и по незнанию растопчет что-нибудь на полу, потрогает или отломит сталактит или другой натек.

Водные объекты чувствительны к разного рода загрязнениям: бытовыми отходами и продуктами жизнедеятельности (особенно озера), отработанными батарейками и карбидом кальция. Это ведет не только ухудшению качества воды, но и губит жизнь населяющих их организмов.

Пещеры являются сложными природными системами с исторически сложившимися внутренними связями, которые служат не только цепями передачи внешних воздействий внутрь пещер, но и в обратном направлении. Системная взаимосвязь компонентов внутренней среды пещер в ответ на появление отдельных воздействий вызывает взаимосогласованные реакции всех элементов системы, различающиеся по своим масштабам. Это приводят к сдвигу ранее установившегося равновесия, которое может быть обратимым или нет. В последнем случае передача воздействия по цепи внутренних связей может сопровождаться различными явлениями: 1) цепной реакцией эффектов различного характера и интенсивности (например, обрушенный в ручей камень может запрудить поток; это может вызвать изменение направления его течения, промыву нового хода, что может нарушить сложившийся характер циркуляции воздуха); 2) аккумуляцией эффекта последовательных воздействий кратковременного характера (каждая группа оставляет немного отходов в каком-то месте пещеры, в результате через несколько лет зловонная свалка разрастается до неимоверных размеров); 3) кумулятивным эффектом (прокопанный ход в глыбовом завале приводит к возникновению новой системы циркуляции воздуха в пещере, что приводит к необратимым изменениям, например таянию всего многолетнего льда).

Мерой специфической уязвимости пещеры по отношению к определенному воздействию может служить её емкость, определяемая интенсивностью реакции системы (изменением компонента внутренней среды) в расчете на единицу (массы, энергии, силы и т.д.) приложенного воздействия. Допустимыми воздействиями на внутреннюю среду пещер являются такие, которые не выходят за пределы размаха естественных колебаний компонентов природной среды, так как вызываемый ими эффект обратим. Критическими по отношению к внутренней среде являются воздействия, превышающие допустимые и приводящие к необратимому сдвигу сложившегося равновесия и, в пределе, к разрушению цепей внутренних взаимосвязей системы (например, вытеснение и гибель фауны при внедрении в пещеру инородных химических веществ или биологических агентов).

Часто идет обсуждение вопроса об охране пещер без ясного представления о том, что и в каком случае подлежит охране. Полезным критерием для разных типов пещер является их энергетический уровень. Высокоэнергетические пещеры затапливаются по меньшей мере ежегодно и часто имеют значительный меженный сток. В таких пещерах русловые отложения хорошо сортированы, часто меняют форму и размеры; натеки редки, так как быстро повреждаются потоками. Ущерб в таких пещерах не накапливается. Среднеэнергетические пещеры проводят меньше воды и часто содержат материал поверхностного происхождения, привнесенный животными, ветром, гравитационными процессами. Вторичные образования - массивные натеки, отражающие избыточное насыщение водами, но условия еще слишком активны для роста тонких кристаллических образований. Эти пещеры накапливают ущерб, но он может маскироваться случайными паводками и переотложением осадков. Низкоэнергетические пещеры - чрезвычайно спокойные. Падение капли воды - важное событие. Вторичные образования очень деликатны, растут целиком за счет кристаллизационных сил. Эти пещеры высокочувствительны к ущербу и не обладают способностью к самовосстановлению. Все три типа энергетичности могут быть встречены в одной пещере.

Уязвимость и ранимость пещер заставляют по особому относиться к их охране. Причём индивидуальность пещер, т.е. специфические черты их строения, особенности процессов, происходящих в них, а также возможности необычных находок в них в будущем требуют индивидуального подхода к охране каждой конкретной полости. Это, в свою очередь, заставляет говорить о необходимости их всестороннего изучения.

 

Микрофлора почвы

 

Почва является главным резервуаром и естественной средой обитания микроорганизмов в природе, которые принимают активное участие в процессах формирования и самоочищения почвы, а также в круговороте веществ в природе (азота, углерода, серы, железа и других соединений). Почва формируется из горных пород, разрушающихся под действием ветра, воды, живых организмов, и из органических соединений, образующихся в результате гибели растений и животных. Разнообразные микроорганизмы почвы обитают в водных и коллоидных пленках, которые как бы обволакивают почвенные частицы. Широко осуществляется передвижение и расселение почвенных подвижных бактерий по гифам грибов, вокруг которых так же обнаруживаются микроскопические тонкие пленки.

Качественный состав микрофлоры почвы очень разнообразен: множество видов бактерий (преимущественно спорообразующих), актиномицет, спирохет, архебактерий, простейших, сине – зеленых водорослей, микоплазм, грибов, вирусов. Состав и соотношение между различными группами микроорганизмов изменяются в зависимости от вида почвы, способ ее обработки, содержание органического вещества, влаги, от климатических условий и многих других причин. Так, в песчаных почвах, хорошо аэрирующихся, преобладают аэробные микроорганизмы, а в глинистых, влагоемких, в которых проникновение кислорода затруднено, живут в основном анаэробы.

Микроорганизмы находятся в сложном биоценозе, характеризующимся антагонистическими и симбиотическими взаимоотношениями, как между собой, так и с растениями. В самой почве идет непрерывная борьба за существование, конкуренция за питание, кислород и т. Д. Нередко жизнедеятельность одних групп бактерий подавляется действием антибиотических веществ и бактериоцинов, выделяемых другими группами.

Живая масса микроорганизмов в почве на 1 га в среднем составляет около 1000 кг. Численность микроорганизмов подвержена сезонным колебаниям: весной число особей увеличивается, достигая максимума к лету, в разгар лета уменьшается, по-видимому, в результате наиболее активного воздействия солнечных лучей, осенью опять увеличивается и снижается зимой.

Распределение микробов в почве неравномерно. На поверхности и в слое толщиной 1–2 мм относительно мало микробов, несмотря на постоянное обсеменение почвы, что объясняется губительным действием ультрафиолетовых лучей солнца и высушиванием. Наиболее обильна микрофлора на глубине 10–20 см. В этом слое протекают основные биохимические процессы превращения органического вещества, обусловленные жизнедеятельность разнообразных микроорганизмов, последовательно сменяющих друг друга. В более глубоких почвенных слоях флора становится скудной и на глубине 4–5 м микроорганизмы обнаруживаются очень в малых числах. В составе микрофлоры почвы принято выделять так называемые физиологические группы микроорганизмов, которые участвуют в различных процессах и на разных этапах постепенного разложения органических веществ(Кочемасов, Ефремова, 1987).

1. Бактерии – аммонификаторы, являющиеся гнилостными микроорганизмами, вызывают гниение остатков растений. Трупов животных, разложение мочевины – B.suptilis, B. Mezentericus, Serratia marcescens бактерии рода Proteus; грибы рода Aspergillus, Мucor, Рenicillium; анаэробы - C. Sporogenes, C. putrificum; уробактерии - Urobacillus pasteuri Sarcina urea, расщепляющие мочевину.

2. Нитрифицирующие бактерии: Nitrosomonas и Nitrobacter. Nitrosomonas обладают способность окислять аммиак (образующий как результат жизнедеятельности аммонифицирующих бактерий) до азотистой кислоты, образуя нитраты. При деятельности Nitrobacter азотистая кислота окисляется до азотной и превращается в нитраты.

3. Азотфиксирующие бактерии. Клубеньковые и свободноживущие азотфиксирующие бактерии обладают исключительной способностью усваивать из воздуха атмосферный азот и в процессе жизнедеятельности образуют из молекулярного азота белки и другие органические соединения азота, которые используются растениями.

4. Бактерии, расщепляющие клетчатку, вызывающие различные виды брожения, наблюдаемые при разложении микробами органических соединений углерода (молочнокислое, спиртовое, маслянокислое, уксусное, пропионовокислое, ацетонобутиловое и др.).

5. Бактерии, учавстывующие в круговороте серы, железа, фосфора и других элементов – серобактерии, железобактерии и т. д., разнообразные виды которых осуществляют окисление и восстановление этих соединений в природе.

Следует помнить, что микроорганизмы могут выполнять различные физиологические функции, поэтому такое выделение групп условно, к тому же процессы, протекающие в почве, всегда взаимосвязаны, последовательность, направление, темпы их развития зависит от условий окружающей среды (Кочемасов, Ефремова, 1987).


Объекты исследования

 

Объектом исследования являлась пещера Баскунчакская.

Пещера представляет собой горизонтальный двух-, трехъярусный лабиринт по характеру морфологии условно делимый на три части: Основную Галерею - северо-восточную, самую крупную от входа №1,Вертикальный Шкуродер – узкий меандр от входа № 3 и Лабиринт, соединяющий первые две части. Обвальные залы и галереи шириной в несколько метров с четко выраженной на стенах ярусностью местами имеют высоту до 10 м. В целом сухая, пещера имеет два сифона: один – в лабиринтовой части, вбирающий временный водоток из тальвега, второй – в виде озера диаметром около 4 м, из которого периодически появляется водоток в Основную Галерею. Это озеро-сифон единственным доступным источником питьевой воды (проведен химический анализ) как в пещере, так и на несколько километров в окрестности. Пещера Баскунчакская является наиболее крупной подземной карстовой формой Прикаспийской низменности. Начало формирования пещеры относится к концу позднехвалынского времени, то есть примерно 6 тысяч лет назад. На протяжении этого времени в полости четыре раза существовал достаточно мощный водный поток, что на фоне вертикальных движений, обусловленных солянокупольной тектоникой, привело к формированию нескольких уровней и отразилось в морфологии поперечных профилей ходов в некоторых частях пещеры. В Баскунчакской пещере можно наблюдать разнообразные карстовые формы: желобковые и лунковые кары, закарстованные трещины, гипсовые ножи. Турбулентные потоки, некогда имевшие здесь место, создали на некоторых участках пещеры своеобразные останцовые формы, морфологически сходные со сталагнатами. В зимнее время в определенных местах пещеры образуются ледяные сталагмиты (Белононич, Цой, 1998).

Первая проба была отобрана возле горизонтального шкуродера на глубине 20-25 см.

Вторая проба была отобрана в галерее входа №2 на глубине 10-15 см.

Третья проба в галерее входа №3 на глубине 10-15 см.

Четвертая проба была отобрана в главной Галереи на глубине 10 – 15 см.

Пятая проба была отобрана в начале вертикального шкуродера.

Шестая проба была отобрана в лабиринтовой части пещеры.

Седьмая проба отобрана в галерее входа №2.

Восьмая проба отобрана в грязевом сифоне.

Девятая проба отобрана в районе горизонтального шкуродера.

2.2 Методы исследования

Методы отбора проб

Почвенный образец берут стерильным буром, стерильной лопаткой и стерильным ножом в заранее приготовленную стеклянную широкогорлую стерильную банку, закручивающуюся пробкой, обернутой стерильной ватой, либо в стерильные полиэтиленовые или пергаментные мешки. На пакеты, банки наклеивают этикетки с указанием места взятия проб, горизонта и других сведений. Бур, лопату и нож перед взятием образца тщательно очищают, затем обжигают горящим спиртом (Теппер,1987).

Почвенные образцы анализируют в первые сутки. В случае необходимости допускается хранение их в холодном помещении (в холодильнике) в течение двух дней. Для большей однородности среднего образца, соблюдая все правила асептики, его тщательно перемешивают, вынимают корни растений, различные включения (Теппер,1987).

Для дальнейшего исследования отобранных проб, предварительно необходимо произвести стерилизацию микробиологической посуды и сред, используемых в последующей работе.

Методы стерилизации

Стерилизация или обеспложивание (от лат. sterilis - бесплодный), это полное уничтожение клеток микроорганизмов в питательных средах, посуде и пр.

Известно несколько методов стерилизации. Чаще всего применяют стерилизацию нагреванием.

1. Фламбирование, или прокаливание.

Прокаливать можно непосредственно перед употреблением платиновые петли, иглы, шпатели, мелкие металлические предметы (ножницы, ланцеты, пинцеты), а также стеклянные палочки, предметные, покровные стекла и т.д.

 2. Стерилизация сухим жаром

Ее применяют для обработки посуды и сухих материалов. При этом стерилизуемый объем выдерживают при170◦C в течение 2 часов в печи Пастера или в электросушильных шкафах. Перед стерилизацией стеклянную посуду закрывают ватными пробками и обертывают бумагой. Чашки, пробирки, пипетки, заворачивают в бумагу или помещают в особые футляры и пеналы, в которых посуда может хранится после стерилизации (Теппер,1987).

3. Стерилизация текучим паром.

Текучим паром (100◦C) обрабатывают предметы, портящиеся от сухого жара, и некоторые питательные среды, не выдерживающие более высокой температуры (среды с углеводами, МПЖ, молоко), Проводят стерилизацию в кипятильнике Коха по 30 мин. в течение 3 суток ежедневно. Такая стерилизация называется дробной.

4.Стерилизация насыщенным паром под давлением.

Это наиболее быстрый и надежный способ стерилизации, при котором гибнут самые устойчивые ссоры. С его помощью стерилизуют большинство питательных сред, посуду.

Обработку насыщенным паром проводят в герметически закрывающимся толстостенном котле – автоклаве. (Теппер,1987).

Техника окраски по Граму

На хорошо обезжиренное стекло наносят три тонких мазка разных культур микроорганизмов. Мазки высушивают на воздухе, фиксируют над пламенем горелки и окрашивают в течение 1 мин метилвиолетом. Сливают краситель и, не промывая препарат водой, наносят на него раствор Люголя на 1 мин (до полного почернения мазка). Препарат, на промывая водой, обрабатывают,96%-ным спиртом в течение 15-20 с. Время обесцвечивания очень существенно, при превышении указанного срока обесцвечивается и грамположительные клетки, при недостаточным сроке обработки препарат окажется перекрашенным. Промыв препарат водой, его окрашивают фуксином в течение 1 мин (Теппер 1987).

После этой обработки грамположительные микроорганизмы окрашиваются в темно-фиолетовый цвет, грамотрицательные имеют только цвет дополнительной окраски (фуксина).

Результаты окраски по Граму зависят от возраста культуры: в старых культурах клетки всегда окрашиваются грамотрицательно. Поэтому лучше использовать молодые односуточные культуры (Теппер 1987).

Определение бактерий группы кишечных палочек

При исследовании почв на присутствие БГКП рекомендуется применение титрационного метода при предполагаемой невысокой степени фекального загрязнения, метод мембранных фильтров используется при анализе малозагрязненных почв. При высокой степени фекального загрязнения рекомендуется делать прямой посев почвенной суспензии (1: 10) на среду Эндо.

Титрационный метод. Из приготовленных разведений почвенной суспензии делают посевы во флаконы и пробирки с жидкой питательной средой Кесслера – 10 мл (из разведения 1:10) – в 50 мл среды, по 1 мл из последующих разведений – в 9 мл среды. Посевы инкубируются в течение 48 ч при температуре 370С. При отсутствии во флаконах и пробирках роста, характеризующегося газообразованием и помутнением, дается отрицательный ответ об отсутствии БГКП.

Если в засеянных сосудах обнаруживается рост в виде помутнения среды или помутнения и газообразования, следует сделать высев в чашки Петри со средой Эндо или в пробирки с розолововым агаром, инкубировать 24 ч при температуре 37 0С. Дальнейшей идентификацией (аналогично определению БГКП в воде) подвергаются типичные для эшерихий красные или розовые с металлическим блеском колонии на среде Эндо, а также желтые или оранжевые колонии на розоловой среде. Результат выражается в коли – индексе, т. Е. количество БГКП, обнаруженных в 1 г почвы.


Список литературы

 

1. Асонов Н.Р. Микробиология.-2-е изд., перераб. и доп.- М.:

АгропромиздатЮ1989.-350с.

2.Вербина Н.М. Гидромикробиология с основами общей микробиологии. - М.: «Пищевая промышленность», 1980. – 288с.

3.Государственный природный заповедник. «Богдинско - Баскунчакский»

Астрахань. 1998.

4. Методические указания по количественному учету микроорганизмов для студентов специальности 012400 «Микробиология», Куликова И.Ю., 2004-35с.

5.Кочемасов З.Н. Ефремова С.А. Санитарная микробиология и вирусология. – М.: Медецина, 1987. – 352с.

6.Мищустин Е.Н. Микробиология. - М.: Агропромиздат, 1987-338с.

7.Нетрусов А.П

8. Определитель бактерий Берджи. В 2 – х т.: перевод с англ./ Под ред.

Дж. Хоулта, Н.Грига, П.Снита, Дж. Стейли, С. Уильямса – М.: Мир,

1997. – 364с.

9. Расанов Н.Р. Микробиология. М.: Колос, 1989.

10. Теппер Е.З. и др. Практикум по микробиологии Учеб. пособие для вузов. М.: Агропромиздат, 1987. – 237с.

11. http:⁄⁄ www.ecocave.ru.

Введение

 

Пещеры представляют собой элементы неживой природы, специфический подземный ландшафт, который существовал задолго до человека и имеет право на существование в настоящем как компонент ландшафтной оболочки планеты. Это среда обитания специфической фауны, часть из которой живет в них постоянно (троглобионты), а часть временно (троглофилы). Из-за стабильности климатических условий, сохраняющихся в полостях в течение длительного времени, среди пещерной фауны много эндемичных видов (http://www.ecocave.ru).

Пещеры являются геологическими памятниками природы; в которых можно изучать естественные обнажения горных пород, отбирать образцы для геологических, инженерно-геологических и геофизических исследований, прослеживать внутреннюю структуру залегания горных пород, их изменчивость, тектонические нарушения, ископаемую фауну и др. В пещерах открыт естественный доступ к водоносному горизонту, областям формирования и питания источников, питьевых и промышленных вод, существует возможность изучения формирования химического состава подземных вод. Пещеры имеют палеогеографическое значение: в них сохраняются следы давно минувших эпох, которые, как правило, уничтожены на поверхности земли; на основании изучения рыхлых отложений пещер, их строения и ледяных образований в них можно судить об истории развития не только пещеры, но и окружающей её местности. Многие пещеры имеют реакрационное значение и используются в качестве туристических объектов

На территории Астраханской области, в районе озера Баскунчак, находятся около 25 пещер карстового происхождения. Самая крупная и наиболее посещаемая из них, это пещера Баскунчакская (http:// www.ecocave.ru).

Поэтому целью работы стало исследование микробиологического пейзажа грунта пещеры Баскунчакская, для изучение рекреационного влияния, оказываемого на нее, как на объект туристического значения. Для осуществления целей исследования были поставлены следующие задачи:

1. определение численности и видового состава сапрофитной микрофлоры грунта пещеры Баскунчакская;

2. Определение санитарного состояния грунта пещеры Баскунчакская (на основе определения БГКП)


Глава 1 Литературный обзор

Пещера Баскунчакская как объект различного рода исследований

 

Пещера Баскунчакская - крупнейшая гипсовая пещера Прикаспийской карстовой области. Пещера горизонтального типа, имеет протяженность- 1480 м, максимальная глубина - около 32 м. Пещера известна и посещаема людьми более ста лет. Одна из надписей на стене привходовой части пещеры датирована 1874 г. Первые опубликованные исследования относятся, видимо, к 1947 г. По его данным, длина пещеры Большой Баскунчакской составляла 350 м (Белононич, Цой, 1998).

История современных исследований пещеры с 1979 г связана в основном с деятельностью Саратовской спелеологической секции. Секция спелеологов в саратовском университете была образована в декабре 1978 г. по инициативе студентки Сосновской Р.Л. и свои первые серьезные исследования начала в Баскунчакской пещере осенью 1979 г. В дальнейшем на протяжении почти двух десятков лет пещера является одним из основных исследовательских и учебно-тренировочных полигонов, любимой пещерой для всех поколений саратовских спелеологов. При всем многообразии широте научных исследований, спортивных, экскурсионных экспедиций, слетов и соревнований, проведенных здесь спелеологами Саратова и других городов Поволжья, эта пещера является слабо изученной объектом. С 1979 по 1998 г. саратовские спелеологи посещали пещеру Баскунчакскую более 30 раз (Белононич, Цой, 1998).

Для подтверждения наличия подземного хода, соединяющего оба сифона, в 1983 г. на поверхности были проведены геофизические исследования. Использовался метод вертикального электрического зондирования по нескольким профилям. Интерпретация геофизических данных позволяет предположить наличие искомого непройденного хода, вероятно, залитого водой (Белононич, Цой, 1998).

Несмотря на ариадность климата Прикаспия (200-300 мм осадков в год), в некоторые годы при резком снеготаянии в пещере возможны мощные паводки. Продолжительность их не более 2-3 дней в году и поэтому наблюдать паводок в Баскунчакской пещере непросто. Для установления высоты подъема пещерных вод проводился специальный эксперимент: в тальвеги запускались мелкие пенопластовые шарики, которые после спада поводковых вод частично оставались на стенах и потолке, указывая уровень стояния воды. В марте 1994 г. одному из авторов удалось наблюдать такой паводок. При резком снеготаяние многие воронки в верховьях Пещерной балки превратились поглощающие водяные потоки поноры, а во вход №2 втекал мощный ручей из тальвеги балки. В пещере с потолка в некоторых местах низвергались водопады, а многие пониженные участки, особенно дальняя часть Основной Галереи, были полностью затоплены (Белононич, Цой, 1998).

В пещере также проводились микроклиматические исследования, которые включали в себя наблюдения за температурой воздуха в Основной Галерее и вдоль тальвега лабиринтовой части пещеры. Наблюдения проводились круглосуточно с интервалом между замерами в 3-4 часа в течение 1-2 суток в разные месяцы 1979-1981 гг.: в октябре, ноябре, феврале, марте и мае. Целью наблюдений было не только получение характерных и экстремальных значений метеопораметров, но и режимные исследования температуры воздуха: суточный и сезонный ход температуры в зависимости от удаленности от входа; вертикальные градиентные измерения (Белононич, Цой, 1998).

Температура почвы (аллювиальных отложений) в пещере в целом отличается от температуры воздуха не более чем на 0,2-0,5 ◦C. Влажность воздуха меняется в зависимости от внешних условий лишь до 50-60 м от входа, далее ее значения близки к 100% (97-98%) (Белононич, Цой, 1998).

В Баскунчакской пещере неоднократно проводились целенаправленные поиски спелеофауны, в результате которых пещерных обитателей (троглобионтов) обнаружено не было. Однако в пещере встречаются случайно попавшие или временно живущие под землей (троглоксены и троглофилы) виды животных (Белононич, Цой, 1998).

Постоянной колонии летучих мышей в пещере нет, однако она может использоваться как временное убежище при миграциях этих животных. Была поймана одна летучая мышь (рыжая вечерница).

Часто в Основной Галерее встречаются желтобрюхие полозы. Данный вид полоза широко распространен в окрестностях пещеры и большей частью, видимо, в пещеру случайно (Белононич, Цой, 1998).

Довольно многочисленны в пещере Баскунчакской грызуны подсемейства Хомяковых. Один экземпляр большой песчанки был выловлен живоловкой. Проникновение их в глубь пещеры, видимо, объясняется появляющимися на месте подземного спелеолагеря отбросами (Белононич, Цой, 1998).

Иногда встречаются различные беспозвоночные (пауки, многоножки, мокрицы), то есть виды, приспособленные к обитанию во влажной и прохладной среде. Растения представлены мхами и лишайниками в привходовой части пещеры (Белононич, Цой, 1998).

Микробиологических исследований в пещере Баскунчакская не проводилось. Однако подобного рода исследования проводились в пещере Мраморная, в пещере Большая Орешная и в Воронцовской системе пещер.


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.