Влияние микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Влияние микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте

2021-05-28 31
Влияние микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте 0.00 из 5.00 0 оценок
Заказать работу

Влияние микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте


Введение

 

Использование пестицидов – практически обязательный элемент технологии возделывания основных сельскохозяйственных культур. Однако высокое насыщение их химическими средствами, характеризующимися различной персистентностью, метаболизмом в почвах и вегетирующих растениях, заметно сказывается на физиолого-биохимических процессах роста и развития возделываемых культур, качестве урожая, состоянии наземных и подземных вод, плодородии почвы. В тоже время оценка и выбор оптимального сочетания химических препаратов при их комплексном применении часто ограничены основным критерием – получаемой прибавкой урожая. Учитывая многообразие прямого воздействия и последействия различных средств химизации и их сочетание на отмеченные процессы, следует подчеркнуть, что комплексное применение химических, агрохимических, биохимических, биологических, токсикологических методов исследований в настоящее время становится насущной необходимостью.

Актуальность работы. В последние годы вопросу защиты окружающей среды от различных загрязнений уделяется серьезное внимание и на исследования в этой области затрачиваются большие средства, что вполне понятно, так как состояние окружающей среды определяет будущее человечества, в том числе здоровье и продолжительность жизни и активной деятельности человека. В связи с этим современные пестициды, прежде чем они будут допущены до практического использования, проходят очень тщательное изучение их поведения в окружающей среде и разрабатываются рекомендации по их безопасному использованию.

Систематическое применение ядохимикатов приводит к их аккумуляции в почве и, как следствие, к поступлению данных ксенобиотиков в продукцию растениеводства. В этих условиях необходим систематический контроль за содержанием остаточных количеств пестицидов в почве, а так же за их влиянием на развитие сельскохозяйственных растений.

Цель работы. Изучение влияния микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте и на содержание в них хлорофилла.

Практическая значимость. Полученные в результате исследований данные могут быть использованы для оценки экологического риска от использования гербицида «Раундап».

Новизна полученных результатов. Был выявлен как стимулирующий, так и ингибирующий эффект различных концентраций изучаемого гербицида. Установлено, что для проростков озимого тритикале оптимальным параметром оценки воздействия данного гербицида является относительный прирост длины и вегетативной массы проростков.

пестицид растение раундап тритикале

 


Обзор литературы

 

Биологическая индикация

 

Общие закономерности поведения загрязнителей пестицидов в почве достаточно хорошо изучены. Вместе с тем, последствия комплексного воздействия поллютантов на биоценозы и фитопопуляцию в реально встречающихся концентрациях исследованы недостаточно. Остатки агрохимикатов в почве и растениях вступают в сложные взаимодействия различного характера, включая антагонизм, синергизм, аддитивность.

Для получения объективной картины загрязнения агроценоза необходимы исследования в двух направлениях. Во-первых, должны совершенствоваться методы инструментального химического анализа, во-вторых, целесообразно более широкое использование биоиндикаторов.

Применение организмов, реагирующих на загрязнение среды обитания изменением визуальных признаков, имеет ряд преимуществ. Оно позволяет существенно сократить или даже исключить применение дорогостоящих и трудоемких физико-химических методов анализа. Биоиндикаторы интегрируют биологически значимые эффекты загрязнения. Они позволяют определять скорость происходящих изменений, пути и места скопления в экосистемах различных токсикантов, делать выводы о степени опасности для человека и полезной биоты конкретных веществ или их сочетаний [41–45].

В зависимости от скорости проявления биоиндикаторных реакций выделяют несколько различных типов чувствительности тест-организмов:

I тип – биоиндикатор проявляет внезапную и сильную реакцию, продолжающуюся некоторое время, после чего перестает реагировать на загрязнитель;

II тип – биоиндикатор в течение длительного времени линейно реагирует на воздействие возрастающей концентрации загрязнителя;

III тип – после немедленной, сильной реакции у биоиндикатора наблюдается ее затухание, сначала резкое, затем постепенное;

IV тип – под влиянием загрязнителя реакция биоиндикатора постепенно становится все более интенсивной, однако достигнув максимума постепенно затухает;

V тип – реакция и типы неоднократно повторяются, возникает осцилляция биоиндикаторных параметров [46].

Для экотоксикологического картирования агроландшафта можно использовать биоиндикаторы, аккумулирующие загрязнители по безбарьерному типу, т.е. прямопропорционально их концентрации во внешней среде. Например, покровные ткани растений (кора) и животных (шерсть) представляются малоактивными индикаторами для этого метода. Листья, цветки и другие органы растений накапливают поллютанты по фонобарьерному типу. Подобные органы и ткани приемлемы для биотестирования загрязнения почв, вод и атмосферы.

При биоиндикации агроценоза необходимо учитывать и тератогенный эффект загрязнителей, т.е. способность вызывать у тест-организмов различные пороки развития. Последствия действия тератогенных загрязнителей различны: в одних случаях тератогенез может охватывать лишь клеточные органеллы, отдельные клетки, в других – затрагивает ткани, органы и весь организм. Поэтому следует учитывать подобные изменения с помощью известных тест-систем, а также отрабатывать новые методы биоиндикации тератогенного действия загрязнителей [47].

Биоиндикация, как инструмент для проведения экологического контроля за состоянием агроэкосистемы, может входить в систему экологического нормирования, методической основой которого является биотестирование. Поэтому система биотестирования должна быть достаточно гибкой, т.к. норма реакции для каждого агроценоза будет индивидуальной.

Специальные биотесты для определения загрязнения фитопопуляции солями тяжелых металлов, остатками пестицидов, микотоксинами и другими агентами сводятся к оценке степени изменения морфометрических, физиологических и биохимических показателей биоты. Подобные нарушения проявляются в изменении энергии прорастания, всхожести семян, размеров корней, в повреждении растений под воздействием загрязнителей.

Классическим тест-объектом на загрязнители является одноклеточная зеленая водоросль хлорелла (Chlorella vulgaris). Ее преимущества для экспресс-анализа загрязнения агроценоза заключаются в коротком жизненном цикле и возможности проводить оценку по таким показателям, как пигментное секторирование, нарушение споруляции клеток и летальность.

Другой метод оценки химических веществ, основанный на эффекте замедленной флюоресценции. Этот эффект проявляется у растений при наличии сформированного фотосинтетического аппарата. Гербициды (ингибиторы фотосинтеза) способны изменять интенсивность флюоресценции. Этим способом можно выявить наличие гербицидов ингибиторов реакций Хилла, однако в случае других пестицидов метод малоэффективен.

Существуют достаточно надежные способы количественной регистрации воздействия загрязнителей, например, плазмолиз. Для определения количества погибших клеток пользуются методом витального окрашивания. Живые клетки сильно ограничивают проникновение в протоплазму органических веществ, и, будучи помещенными в раствор ряда красителей, практически не окрашиваются. В мертвые клетки краска проникает свободно, благодаря чему наличие погибших клеток легко поддается учету.

Метод индукции флюоресценции хлорофилла позволил исследовать активность фотосинтетического аппарата у ряда растений при изменении внешних условий среды. Эта особенность хлорофилла была предложена в качестве индикаторного признака нарушений, вызванных воздействием поллютантов [48].

Лишайники являются надежными индикаторами загрязнения воздуха и традиционно используются для целей биоиндикации. Лихенодиагностика позволяет осуществлять картирование территории по степени загрязненности атмосферного воздуха. Однако возможности лихеноиндикации ограничены чувствительностью нативных видов, поскольку многие лишайники, аккумулируя загрязнитель из атмосферы при его хроническом воздействии, гибнут от низких концентраций, зачастую не достигающих установленнных для человека и теплокровных животных нормативов.

Для биотестирования отработано немало методов на различных культурах: белой горчице (Sinapis alba L.), озимой и яровой пшенице (Triticum aestivum L.), овсе (Avena L.), гречихе (Fagopyrum L.), огурце (Cucumis L.), кресс-салате (Lepidium sativum L.), сое (Glycine L.), льне (Linum L.), еже сборной (Dactylis glomerata L.).

На горчице учитывают степень ингибирования первичного корешка проростка после обработки семян противодвудольным гербицидом. Определяют также увядание растений, торможение прироста листьев надземной массы проростков.

Овес и рис используют как индикаторы почвенных противозлаковых гербицидов, так как это наиболее чувствительные виды среди злаковых культур. При этом основным тестом является ингибирование роста зародышевого корня и листа.

Редис является традиционным биотестом при исследовании остатков пестицидов в почве и конечной продукции растениеводства, т. к. обладает по сравнению с другими объектами наиболее высокой чувствительностью к фитотоксичным препаратам, что обусловлено высокой энергией прорастания его семян и скороспелостью культуры.

На огурце и гречихе тестируют гербициды – производные мочевины и фенилкарбаматы. При этом у огурца учитывают рост первичного корня, у гречихи – утолщение стебля, деформацию зародышевых листьев, а также торможение роста. Кресс-салат используется как тест-объект для оценки загрязнения воздуха и почвы. Тест длится 10 дней. При наличии вредных веществ снижается процент всхожести и ингибируется рост зародышевых корешков.

Видимо, успешное решение проблем биоиндикации во многом будет определяться подбором, а иногда и направленным созданием сортов (линий) культурных растений, чувствительных к загрязнению. К сожалению, в настоящее время подобные сорта и линии отсутствуют. Поэтому усилия исследователей должны быть направлены на поиск перспективных форм и работу с ними [44].

 

 


Заключение

 

В ходе проведенных экспериментов было установлено, что озимое тритикале сорта «Михась» является относительно устойчивым к действию микроколичеств глифосатсодержащего гербицида «Раундап».

Между всхожестью семян озимого тритикале и концентрацией изучаемого препарата зависимости не установлено. Во всех случаях всхожесть семян культуры ниже контрольной, но не снижается более чем на 10%.

При увеличении концентрации раундапа отмечается незакономерная тенденция к снижению сырой и сухой массы проростков озимого тритикале без влияния на обводненность побегов. Только в концентрациях 12,5; 250,0; 350,0; 600,0; 650,0 мкг/л гербицид достоверно стимулирует или ингибирует развитие проростков озимого тритикале.

Было отмечено, что, несмотря на отсутствие достоверного закономерного влияния микроконцентраций глифосатсодержащего гербицида «Раундап» на длину проростков, он оказывает заметное влияние на прирост растений. Однако резкие колебания этого прироста за 2-е суток могут свидетельствовать о возможности каких-то нарушений в морфолого-физиологических процессах у проростков, несмотря на то, что указанный прирост выше, чем в контрольном варианте. Указанное явление характерно и для накопления проростками вегетативной массы.

Было установлено наличие влияния глифосатсодержащего гербицида «Раундап» на содержание в проростках озимого тритикале зеленых пигментов. Но установить четкой зависимости между содержанием хлорофиллов и концентрацией пестицида не удалось.

 

 


Список источников

 

1 Захаренко, В.А. Защита растений в третьем тысячелетии. (Материалы XIV международного конгресса по защите растений) / В.А. Захаренко // Агрохимия. – 2000. – №4. – С. 84–93.

2 История развития и проблемы защиты растений / А.Ф. Ченкин [и др.]; под обш. ред. А.Ф. Ченкина. – М.: РАСХН, 1997. – 331 с.

3 Захаренко, В.А. Пестициды в интегрированной защите растений. Обзоры / В.А. Захаренко // Агрохимия. – 1992. – №12. – С. 92–105.

4 Зексер, Б. Интегрированная защита растений: в ногу со временем / Б. Зексер, А.А. Кириенко // Агрохимия. – 1992. – №11. – С. 8.

5 Данилишин, Б.М. Химизация земледелия: поиски новых альтернатив / Б.М. Данилишин // Вестник сельскохозяйственной науки. – 1992. – №5–6. – С. 157–162.

6 Буга, С.Ф. Защита растений: учебное пособие для средних специальных учебных заведений сельскохозяйственного профиля / С.Ф. Буга, Н.И. Протасов, В.Ф. Самерсов. – М.: Ураджай, 2001. – 307 с.

7 Ченкин, А.Ф. Справочник агронома по защите растений / А.Ф. Ченкин, В.А. Черкасов, В.А. Захаренко. – М.: Агропромиздат, 1990. – 367 с.

8 Иванов, В.В. Использование химических и биологических средств борьбы с вредителями леса / В.В. Иванов. – М.: Пушкин: ВНИИЛМЛХ, 1976. – 340 с.

9 Мельников, Н.Н. Поведение синтетических пиретроидов в объектах окружающей среды / Н.Н. Мельников, Н.И. Аронова // Агрохимия. – 1987. – №9. – С. 109–129.

10 Петрушов, А.З. Пиретроидные инсектициды / А.З. Петрушов // Агрохимия. – 1984. – №6. – С. 121–126.

11 Грапов, А.Ф. Успехи в области инсектицидов и акарицидов / А.Ф. Грапов, Л.В. Разводовская // Агрохимия. – 1990. – №7. – С. 126–147.

12 Спиридонов, Ю.Я. Проблемы засоренности посевов и борьбы с ней в условиях современного состояния сельского хозяйства России / Ю.Я. Спиридонов // Агрохимия. – 1996. – №10. – С. 75–83.

13 Мельников, М.М. Пестициды и окружающая среда / М.М. Мельников, А.И. Волков, О.А. Короткова. – М.: Химия, 1977. – 240 с.

14 Протасов, Н.И. Гербициды в интенсивном земледелии: учебное пособие / Н.И. Протасов. – Минск: Ураджай, 1988. – 232 с.

15 Амирханов, Д.В. Использование пиретроидов для борьбы с колорадским жуком / Д.В. Амирханов, Т.Л. Леонтьева, О.П. Черникова // Агрохимия. – 1990. – №6. – С. 91–97.

16 Зинченко, В.А. Химическая защита растений: средства, технология и экологическая безопасность: учебное пособие для вузов / В.А. Зинченко. – М.: КолосС, 2005. – 232 с.

17 Интегрированные системы защиты сельскохозяйственных культур от вредителей, болезней и сорняков: рекомендации / Нац. акад. наук Респ. Беларусь, Ин-т защиты растений НАН Беларуси; под общ. ред. С.В. Сороки. – Мн.: Бел. наука, 2005. – 462 с.

18 Жукова, П.С. Регуляторы роста и гербициды на овощных культурах и картофеле / П.С. Жукова, Н.А. Лобань. – Мн.: Беларускi кнiгазбор, 2000. – 483 с.

19 Никончик, П.И. Агроэкономические основы систем использования земли / П.И. Никончик. – Минск: Белорус. наука, 2007. – 532 с.

20 Рекомендации по борьбе с сорными растениями в посевах сельскохозяйственных культур: второе изд., испр. и доп. / С.В. Сорока [и др.]. – Минск: РУП «ИВЦ Минфина», 2005. – 104 с.

21 Голиков, Г.П. Методы и проблемы экотоксикологического моделирования и прогнозирования / Г.П. Голиков. – М.: Пущино, 1979. – 76 с.

22 Лунев, М.И. Пестициды и охрана агрофитоценоза / М.И. Лунев. – М.: Колос, 1992. – 270 с.

23 Венгорек, В. Влияние пестицидов на урожай и окружающую среду / В. Венгорек // Защита растений. – 1992. – №10. – С. 6–8.

24 Федке, К. Биохимия и физиология действия гербицидов / К. Федке / пер. с англ. – М.: Агропромиздат, 1985. – 224 с.

25 Голышин, Н.М. Механизм действия фунгицидов / Н.М. Голышин // Защита растений. – 1991. – №10. – С. 13–15.

26 Захаренко, В.А. Гербициды / В.А. Захаренко. – М.: Агропромиздат, 1990. – 240 с.

27 Кожуро, Ю.И. Анализ цитогенетического действия гербицидов трефлан и зенкор на растения ячменя / Ю.И. Кожуро, Н.П. Максимова // Белорусский государственный университет, г. Минск, Беларусь [Электронный ресурс]. – 2008. – Режим доступа: [email protected]. – Дата доступа: 10.11.2009.

28 Каталог пестицидов и удобрений, разрешенных для применения в Республике Беларусь: Справочное издание / Р. А. Новицкий [и др.]; – Мн.: Инфофорум, 2005. – 378 с.

29 Применять глифосат правильно [Электронный ресурс]. – 2008. – Режим доступа: http://www.forest.ru/rus/bulletin/16/5full.html. – Дата доступа: 24.10.2009.

30 Лунев, М.И. Фитотоксическое последствие и побочное действие гербицидов / М.И. Лунев, Л.П. Кретова // Защита растений. – 1991. – №7. – С. 22–23.

31 Кокс, К. Глифосат («Раундап») / К. Кокс // Журнал пестицидной реформы [Электронный ресурс]. – 1998. – №3. – Режим доступа: http://www.pesticide.org/gly.pdf. – Дата доступа: 12.01.2009.

32 Берзин, В.Б. Механизм действия, метаболизм и деградация пиретроидов / В.Б. Берзин // Агрохимия. – 1985. – №2. – С. 126–135.

 

 

Влияние микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте


Введение

 

Использование пестицидов – практически обязательный элемент технологии возделывания основных сельскохозяйственных культур. Однако высокое насыщение их химическими средствами, характеризующимися различной персистентностью, метаболизмом в почвах и вегетирующих растениях, заметно сказывается на физиолого-биохимических процессах роста и развития возделываемых культур, качестве урожая, состоянии наземных и подземных вод, плодородии почвы. В тоже время оценка и выбор оптимального сочетания химических препаратов при их комплексном применении часто ограничены основным критерием – получаемой прибавкой урожая. Учитывая многообразие прямого воздействия и последействия различных средств химизации и их сочетание на отмеченные процессы, следует подчеркнуть, что комплексное применение химических, агрохимических, биохимических, биологических, токсикологических методов исследований в настоящее время становится насущной необходимостью.

Актуальность работы. В последние годы вопросу защиты окружающей среды от различных загрязнений уделяется серьезное внимание и на исследования в этой области затрачиваются большие средства, что вполне понятно, так как состояние окружающей среды определяет будущее человечества, в том числе здоровье и продолжительность жизни и активной деятельности человека. В связи с этим современные пестициды, прежде чем они будут допущены до практического использования, проходят очень тщательное изучение их поведения в окружающей среде и разрабатываются рекомендации по их безопасному использованию.

Систематическое применение ядохимикатов приводит к их аккумуляции в почве и, как следствие, к поступлению данных ксенобиотиков в продукцию растениеводства. В этих условиях необходим систематический контроль за содержанием остаточных количеств пестицидов в почве, а так же за их влиянием на развитие сельскохозяйственных растений.

Цель работы. Изучение влияния микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте и на содержание в них хлорофилла.

Практическая значимость. Полученные в результате исследований данные могут быть использованы для оценки экологического риска от использования гербицида «Раундап».

Новизна полученных результатов. Был выявлен как стимулирующий, так и ингибирующий эффект различных концентраций изучаемого гербицида. Установлено, что для проростков озимого тритикале оптимальным параметром оценки воздействия данного гербицида является относительный прирост длины и вегетативной массы проростков.

пестицид растение раундап тритикале

 


Обзор литературы

 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.04 с.