Глава девятая. Борьба за короткие волны — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Глава девятая. Борьба за короткие волны

2022-08-21 59
Глава девятая. Борьба за короткие волны 0.00 из 5.00 0 оценок
Заказать работу

 

Неожиданное открытие

 

В двадцатых годах нашего столетия чуть ли не в каждом городе строилась радиостанция. Многие любители обзаводились собственными передатчиками. Каждый работал на той волне, какая ему больше нравилась: в эфире образовалась вредная неразбериха.

Тогда было предпринято распределение радиоволн между государствами и типами станций. Волну в 600 метров выделили исключительно для подачи сигналов бедствия – SOS. Длинные волны предоставили широковещательным станциям. Короткие волны, считавшиеся негодными для устойчивой и дальней связи, уступили радиолюбителям.

По тогдашнему мнению специалистов короткие волны позволяли вести передачу всего лишь на 20–30 километров. Дальнейшие события скоро опровергли это заблуждение.

В 1923 году радиолюбители на волне около 20 метров установили двустороннюю связь через Атлантический океан. Специалисты были удивлены: маленькая коротковолновая радиостанция, мощностью всего лишь в 40 ватт, сделала то, чего не могли добиться длинноволновые станции в десятки киловатт. Короткие волны, которые, как казалось, не могли преодолеть даже 50 километров, перенесли человеческое слово на расстояние в 10 000 километров.

В Советском Союзе подобные опыты по организации связи на коротких волнах были выполнены профессором М. А. Бонч‑Бруевичем и В. В. Татариновым. Они установили круглосуточную связь Москвы с Ташкентом и Владивостоком передатчиками мощностью в несколько десятков ватт (на волнах 15–30 метров).

Ученые, инженеры, радиолюбители занялись исследованием свойств радиоволн короче 50 метров.

Эти волны распространяются очень своеобразно. Известен такой курьезный случай. Однажды в окрестностях Рима возник большой пожар. Телефон бездействовал. Вызвать пожарную команду было невозможно. Один из местных радиолюбителей‑коротковолновиков стал посылать в эфир сигналы бедствия. В это время какой‑то датчанин вел двусторонний разговор с римским радиолюбителем. Приняв сигналы бедствия, датчанин немедленно сообщил своему римскому собеседнику, чтобы тот вызвал пожарную команду. Через 8 минут после подачи сигнала римские пожарные выехали на место. Так связь с Римом была установлена… через Копенгаген.

Чтобы выяснить дальность действия радиопередатчиков, сделали опыт. Возле длинноволновой радиостанции поместили коротковолновую. Оба передатчика работали несколько суток подряд.

На автомобиль погрузили два радиоприемника. Один из них принимал передачу длинноволновой станции, другой – коротковолновой. Силу сигналов, принимаемых каждым из приемников, отмечал на телеграфной ленте записывающий автомат.

Автомобиль‑лабораторию отправили в путь. По мере удаления автомобиля слышимость коротковолнового передатчика быстро падала. На расстоянии около 50 километров она исчезла совершенно. Передача длинноволновой станции была слышна хорошо, хотя сила принимаемых сигналов и ослабела, но совсем не в такой мере, как у коротковолнового передатчика.

На пятисотом километре слышимость длинноволновой станции пропала, но зато появились сигналы коротковолнового передатчика. Вскоре они достигли полной силы и были слышны так, как будто автомобиль находился возле самой станции. И сколько бы лаборатория ни удалялась от радиостанции, сила сигналов уменьшалась очень медленно.

Существование «мертвого» пространства вокруг коротковолнового передатчика и малая зависимость силы приема от расстояния на большом удалении от передатчика навели на мысль, что короткие волны распространяются не вдоль земной поверхности, как предполагали раньше, а иным путем, и что на расстоянии в несколько тысяч километров радиоприемник улавливает не прямые сигналы радиостанции, а отражение этих сигналов. Нужно было найти то зеркало, от которого отражаются радиосигналы.

Еще в 1920 году М. В. Шулейкин указывал, что следует изучить верхние слои атмосферы. Воздух на высоте в 90 километров над землей сильно ионизирован ультрафиолетовым излучением солнца. Ионизированные газы, как и все проводники, отражают короткие радиоволны.

Следовательно, те сигналы коротковолновой станции, которые распространяются вдоль земной поверхности, быстро слабеют и гаснут. Сигналы же, посланные вверх, достигают ионизированных слоев воздуха – ионосферы – и отражаются от нее, как от зеркала, обратно к земле. Попав на влажную землю или на морскую поверхность, они вновь отражаются к ионосфере, чтобы потом опять вернуться к земной поверхности (рис. 87).

Рис. 87. Длинные волны по мере удаления от радиостанции слабеют, а короткие волны, многократно отражаясь от поверхности земли и ионосферы, облетают вокруг земного шара.

 

Радиосигналы гигантскими прыжками летят между ионосферой и землей на десятки тысяч километров. Они могут таким образом совершить даже кругосветное путешествие.

Эти соображения скоро подтвердились на опыте. Приемник, расположенный возле передатчика, иногда принимает вслед за сигналами передающей станции эхо этих же сигналов, облетевшее вокруг земного шара. Такое кругосветное эхо, – а их иной раз бывает несколько подряд, – сильно искажает прием, так как, вследствие большой скорости распространения радиоволн, эхо отстает от сигналов всего лишь на несколько десятых долей секунды и смешивается с ними.

 

Контур надо уменьшить

 

Ученые, изобретатели, радиолюбители отчетливо поняли преимущества коротких волн перед длинными – радиопередача на коротких волнах звучит чище, отчетливее, «атмосферики», то есть трески и шумы, создаваемые грозовыми разрядами в атмосфере, меньше мешают приему; короткие волны позволяют поддерживать дальнюю связь с минимальной затратой мощности и даже вести направленную передачу. Впоследствии они оказались незаменимыми для локационных станций, радиодальномеров и других навигационных приборов, а также для телевидения.

И всем скоро стало совершенно ясно, что чем короче волны, тем надежнее и устойчивее работают на них многие радиоаппараты.

Надо осваивать более короткие волны, говорили конструкторы и, чтобы добиться этого, стали уменьшать размеры катушек самоиндукций и конденсаторов колебательных контуров. Ведь чем меньше самоиндукция и чем меньше емкость, тем короче получаются волны.

Изобретатели дошли в конце концов до того, что в катушке самоиндукции остался всего лишь один единственный виток, а в конденсаторе – две совсем маленькие пластины. Казалось, что дальше сокращать контур уже некуда.

Развитие радиотехники в этой области несколько затормозилось: надо было как‑то преодолеть возникшие затруднения. Изобретатели попытались соединить в одно целое катушку самоиндукции и конденсатор и изготовили колебательный контур из двух прямых и параллельных друг другу медных проволок, соединенных перемычкой, наподобие буквы П. Параллельные проволоки служили одновременно и емкостью и самоиндукцией.

Однако самое существенное препятствие, мешавшее освоению ультракоротких волн, заключалось не в форме и размерах колебательного контура. Дело в том, что любой, пусть даже самый маленький, контур надо подключать к лампе с помощью соединительных проводов, а соединительные провода, да и сама лампа, тоже обладают собственными самоиндукциями и емкостями. И все эти самоиндукции и емкости – контура, соединительных проводов и лампы – складываются, и укоротить длину волны ниже определенного предела не удается.

Следовательно, прежде всего надо изгнать из схемы все соединительные провода – они только мешают, а из контура и лампы составить одно целое, один прибор.

Наиболее удобным для этой цели оказался контур, изготовленный наподобие покрышки автомобильного колеса, то есть в виде пустотелого кольца с разрезом вдоль его внутренней окружности.

Контур подобной формы получил название полого или объемного резонатора. Для присоединения такого резонатора к лампе никаких соединительных проводов не требуется: его, как бублик, надевают прямо на баллон лампы.

 

Электрон недостаточно быстр

 

Но и этого усовершенствования оказалось недостаточно. Обнаружилось новое, еще более серьезное препятствие, которое зависит от свойств самого электрона.

При длине волны в 1 метр частота колебаний на сетке лампы составит почти 300 миллионов в секунду. Если же укоротить длину волны до 10 сантиметров, а именно этого и добивались ученые, то частота достигнет 3 миллиардов колебаний в секунду!

Как ни велика скорость электрона в электронной лампе, все же он летит недостаточно быстро. Он не успевает пролететь расстояние от сетки до анода, как напряжение на сетке уже изменяется; анодный ток перестает следовать за командами сетки.

Регулировщик уличного движения на перекрестке должен включать зеленый или красный фонарь светофора, обязательно сообразуясь со скоростью транспорта. Нельзя менять сигнал раньше, чем трамваи и автомашины пересекут перекресток. Если же регулировщик начнет спешить, то шоферы, не успевая следовать командам светофора, просто перестанут его слушаться, и на перекрестке произойдет беспорядок.

Сетка в лампе служит регулировщиком «уличного» движения электронов. И в лампе тоже возникнет беспорядок, если на сетку подать слишком высокую частоту. Электроны начнут прибывать на анод не вовремя, опаздывать. Вся работа контура нарушится.

 

Лампа – морской прибой

 

Электронной суматохи в лампе казалось бы можно избежать. Для этого надо уменьшить расстояние между катодом и анодом, – сблизить их, это сократит время полета электронов в баллоне лампы.

Конструкторы взялись за переделку ламп. Появились лампы размером с пальчик – «пальчиковые» пентоды и размером с желудь – лампы «желуди».

Но, увы, «хвост вытащишь – нос увязнет». В «желудях» электронной «толчеи» не получается, но зато между чересчур сближенными электродами увеличилась емкостная связь. Опять плохо!

При большой внутренней емкости через лампу начинает проходить переменный ток. Лампа перестает выполнять одно из своих назначений – служить выпрямителем тока.

Все это привело к мысли, что надо не только объединить контур с лампой в одном приборе, но создать совершенно новый тип лампы, предназначенный специально для очень коротких волн.

Такие лампы были созданы советскими учеными. В 1932 году Д. А. Рожанский разработал проект лампы, получившей название клистрона.

Постройку клистрона осуществили в 1935 году А. Арсеньева и О. Хейль. Слово клистрон в переводе с греческого означает «морской прибой», и то, что происходит за стеклянными стенками клистрона, действительно напоминает морской прибой, когда волны равномерной чередой накатываются на берег.

Клистрон представляет собой стеклянную трубку, на которой надеты два «бублика», то есть два объемных резонатора, исполняющие обязанности колебательных контуров.

Как видно на рисунке 88 в объемном резонаторе клистрона роль емкости – конденсатора – исполняют сетки, а катушка индуктивности заменена металлической трубкой, согнутой в кольцо и разрезанной внутри. Стрелки показывают, как по ней движутся электроны, когда в резонаторе происходят электрические колебания.

Рис. 88. Объемный резонатор клистрона в форме бублика, сделанного из металлической трубки с разрезом по внутреннему диаметру. Часть трубки вырезана, чтобы было видно, как он устроен. Стрелки указывают направления движения электронов в резонаторе при колебаниях.

 

В одном конце трубки помещается электронная пушка, по своему устройству похожая на электронную пушку осциллоскопа. Она посылает узкий и прямой пучок электродов вдоль оси трубки по направлению к аноду, который расположен в противоположном конце трубки (рис. 89).

Рис. 89. Схема клистрона: сетки группирователя разбивают электронный поток на отдельные сгустки, которые отдают свою энергию сеткам улавливателя.

 

По пути от электронной пушки к аноду электронам приходится пролетать через две пары сеток, которые являются продолжением стенок объемных резонаторов.

К первому резонатору, то есть к первой паре сеток подведено переменное напряжение высокой частоты. Знаки зарядов на этих сетках непрерывно и очень быстро сменяют друг друга, – когда на одной сетке появляется минус, то на другой – плюс. А через несколько десятимиллиардных долей секунды плюс сменяется минусом, минус опять плюсом и так далее.

Электроны, выброшенные пушкой, летят до первой пары сеток все с одинаковой скоростью и сплошным потоком. Попав в пространство между сетками, электроны оказываются во власти высокочастотного поля этих сеток.

Постоянное электрическое поле действует на электроны подобно ветру – на пылинки. Оно увлекает, гонит и несет электроны, ускоряет их движение или, наоборот, замедляет его.

Переменное же поле можно сравнить с ветром, который дует то спереди, то сзади, то есть поочередно и подгоняет электроны, и тормозит.

 

Электронные сгустки

 

В тот момент, когда на сетке, более близкой к электронной пушке, появляется плюс, на второй сетке будет минус. Электроны, оказавшиеся в междусеточном пространстве, испытывают одновременно воздействие обеих сеток.

Сетка, которую они уже пролетели, то есть оставшаяся у электронов позади, притягивает их к себе, – замедляет движение электронов. Вторая сетка, которую еще предстоит проскочить, отталкивает электроны назад, то есть тоже замедляет их полет.

В целом же получается так, как будто «ветер дует электронам в лоб», – электрическое поле сеток тормозит их движение, и электроны покидают междусеточное пространство с пониженной скоростью.

Разумеется, что электроны, потеряв часть своей скорости, отстают от тех электронов, которые проскочили сетки раньше их и летят впереди. В электронном потоке образуется разрыв.

В следующий миг сетки обмениваются знаками зарядов. На первой сетке, более близкой к электронной пушке, появляется минус, и она начинает отталкивать электроны, подгонять их. На второй сетке минус сменяется плюсом, и она начинает притягивать к себе электроны, то есть тоже ускоряет их движение. И эти электроны покидают сетки, так сказать, с «попутным ветром» и летят с повышенной скоростью.

Вполне очевидно, что они тоже оторвутся от тех электронов, которые движутся позади и занимают их место в междусеточном пространстве. В потоке электронов, миновавших первую пару сеток, образуются обособленные стайки.

Так как электроны, составляющие головной отряд такой стайки, летят с пониженной скоростью, а электроны, оказавшиеся в хвосте стайки, летят с повышенной скоростью, то, очевидно, задние будут нагонять передних, и по мере продвижения вперед стая электронов будет становиться все плотнее и плотнее. Стайка собьется в довольно плотный электронный сгусток, или, как иногда говорят, – «пакет».

Такие электронные стайки‑сгустки получаются после каждой смены зарядов на сетках первого резонатора. Следовательно, число электронных сгустков, образующихся за секунду, равно частоте колебаний на сетках, а плотность электронов в каждом сгустке соответствует силе этих колебаний.

Итак, сетки первого резонатора рубят электронный поток на отдельные стаи и уплотняют их, сбивая электроны в «пакеты».

Подлетая к сеткам второго резонатора, который называется улавливателем, эти электронные сгустки‑пакеты обрушиваются на них подобно волнам морского прибоя.

Сгустки один за другим проходят сквозь сетки улавливателя и в силу индукции отдают им свою энергию, возбуждая во втором резонаторе колебания той же частоты, что и в первом, но более мощные. Потеряв в улавливателе значительную часть своей энергии, «отработавшие» электроны налетают на коллектор, который выводит их из лампы.

Но невольно возникает вопрос: откуда же берется высокая частота, которой питают первый «бублик»? На это легко ответить – от улавливателя. Внутрь полостей обоих резонаторов введены концы проводника, соединяющего резонаторы между собой (рис. 89).

Это устанавливается между обоими резонаторами связь, благодаря которой клистрон самовозбуждается, как и обычная генераторная лампа с обратной связью в колебательном контуре.

В последние годы чаще всего применяют клистроны, работающие на волнах от 9 до 11 и от 3 до 3,3 см. Но уже изготовляются клистроны и для волн в 7–8 миллиметров.

 

В вихре магнитного поля

 

Еще раньше клистрона появился другой прибор, тоже предназначенный для создания очень коротких радиоволн и названный магнетроном.

Магнетроны отличаются от всех остальных радиоламп тем, что управление электронным потоком производится в них не электрическим полем сетки, а магнитным. Если электрическое поле сравнимо с обычным ветром, то магнитное поле – это вихрь или смерч.

Электрон, пересекая магнитное поле, движется по дуге окружности, и чем сильнее поле, тем круче изогнется траектория полета электрона. Электрон в магнитном поле вьется, как песчинка, подхваченная вихрем (рис. 90).

Рис. 90. Движение электрона, попавшего в магнитное поле.

 

Эту особенность магнитного поля использовали для создания магнетронов. Первый в мире мощный магнетрон построили в 1939 году советские инженеры Д. Е. Моляров и Η. Ф. Алексеев.

В магнетроне только два электрода – анод и катод; сеток нет. Анод изготовлен в виде полого, металлического цилиндра с толстыми стенками. Катод имеет форму палочки или стержня и помещается внутри полости анода в самом ее центре, то есть он расположен по оси анода. В стенках анода, параллельно его оси, высверлены каналы, соединенные боковой стороной с внутренней полостью магнетрона; это объемные резонаторы (рис. 91).

Рис. 91. Основные части разрезного магнетрона. Электроны крутятся вихрем вокруг катода. Электрические колебания возникают внутри каждого цилиндрического канала, разрез которого служит конденсатором.

 

Оба электрода находятся в сильном магнитном поле, направленном так, что его силовые линии пронизывают пространство между анодом и катодом вдоль их оси.

На катод, как и в обычной лампе, подают отрицательное напряжение, на анод – положительное.

Катод подогревают электрическим током. Он испускает электроны. Увлекаемые электрическим полем, электроны мчатся от катода к аноду. Если б не было магнитного поля, они полетели бы по прямым линиям, то есть по радиусам, и без помех «приземлились» бы на аноде.

Но магнитное поле диктует им свои законы. Пересекая магнитные силовые линии, электроны сворачивают с прямого пути и несутся по кругу, как щепки, попавшие в водоворот.

Напряжение на электродах и сила магнитного поля подобраны с таким расчетом, чтобы электроны поворачивали обратно к катоду как раз возле самой поверхности анода. Они скользят вдоль анода и летят назад. Ток через магнетрон почти не идет.

Электроны же, вылетая из раскаленного катода, накапливаются в «вихре» магнитного поля: в пространстве между катодом и анодом сосредоточивается мощный электрический заряд.

Этот заряд не остается неизменным, на нем сказывается влияние полых резонаторов, высверленных в стенках анода. Под их воздействием электронный вихрь начинает пульсировать, он то сжимается, то расширяется. Но, расширяясь, электронный вихрь каждый раз касается анода.

На анод обрушиваются миллиарды миллиардов электронов сразу. Возникает резкий отрывистый толчок, создающий в цепи анода колебания электрического тока. Такие толчки следуют один за другим – магнетрон генерирует колебания.

Эти колебания происходят с частотой, которая определяется размерами резонаторов и устройством магнетрона.

Анодное напряжение на магнетрон подается не все время, а только на очень короткие промежутки времени мощными импульсами, например, на одну стотысячную долю секунды через каждую сотую долю секунды. После каждого такого импульса магнетрон, создав в течение его колебания огромной мощности, может «отдохнуть», а общий расход затраченной в секунду энергии оказывается не очень большим – магнетрон каждую 0,00001 секунды работает, а 0,01 секунды отдыхает.

В результате разных усовершенствований, соединив в себе колебательный контур с мощной лампой, магнетрон стал очень портативным прибором.

Современный мощный магнетрон свободно умещается на ладони. Несмотря на столь скромные размеры, он служит генератором исключительно мощных электромагнитных колебаний (рис. 92).

Рис. 92. Внешний вид магнетрона.

 

Магнетрон, создающий радиоволны длиной около 3 сантиметров, способен на короткие промежутки времени развивать мощность свыше тысячи киловатт, а магнетрон, предназначенный для генерации радиоволн около 10 сантиметров, развивает мощность в 2500 киловатт. Это делает магнетрон незаменимым прибором для радиолокационных станций, которые должны посылать сигналы мощными короткими импульсами.

 

 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.