Александр Владимирович Марков Елена Борисовна Наймарк — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Александр Владимирович Марков Елена Борисовна Наймарк

2022-07-06 29
Александр Владимирович Марков Елена Борисовна Наймарк 0.00 из 5.00 0 оценок
Заказать работу

Александр Владимирович Марков Елена Борисовна Наймарк

Перспективы отбора. От зеленых пеночек и бессмысленного усложнения до голых землекопов и мутирующего человечества

 

 

Александр Марков, Елена Наймарк

ПЕРСПЕКТИВЫ ОТБОРА

От зеленых пеночек и бессмысленного усложнения до голых землекопов и мутирующего человечества

 

Издание осуществлено при поддержке «Книжных проектов Дмитрия Зимина».

 

Рекомендовано к опубликованию решением Ученого и Учебно‑методического советов биологического факультета Московского государственного университета имени М. В. Ломоносова.

 

Рецензенты: доктор биологических наук А. Ю. Журавлёв, доктор биологических наук А. М. Куликов.

 

© А. Марков, 2019

© Е. Наймарк, 2019

© О. Добровольский, иллюстрации, 2019

© Е. Мартыненко, иллюстрации, 2019

© Е. Серова, иллюстрации, 2019

© А. Бондаренко, художественное оформление, макет, 2019

© ООО «Издательство АСТ», 2019

 

* * *

Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда „Династия“».

Дмитрий Борисович Зимин – основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».

 

Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомых читательской аудитории: издание научно‑популярных книг «Библиотека фонда „Династия“», издательское направление фонда «Московское время» и премию в области русскоязычной научно‑популярной литературы «Просветитель».

 

Подробную информацию о «Книжных проектах Дмитрия Зимина» вы найдете на сайте ziminbookprojects.ru

 

* * *

Благодарности

 

Эта книга, как и три предыдущие, основана на рассказах о новых научных открытиях, которые мы регулярно пишем для сайта «Элементы» (elementy.ru) вот уже тринадцатый год. Эта работа, заставляя нас еженедельно просматривать ведущие научные журналы, не позволяет лениться и бешено расширяет кругозор. Мы глубоко признательны редакторам «Элементов» Елене Мартыновой и Михаилу Воловичу, всегда нас поддерживавших и вдохновлявших, и всем коллегам, с которыми нам доводилось сотрудничать в ходе этой работы. Всерьез заниматься популяризацией науки в нашей стране стало возможно благодаря Дмитрию Борисовичу Зимину и созданному им фонду «Династия». Вклад Зимина в просвещение невозможно переоценить. Мы благодарны издательству Corpus и его главному редактору Варваре Горностаевой, чье благожелательное отношение к нашим трудам, прекрасно изданным стараниями издательского коллектива, неизменно подбадривало нас, когда мы задумывали книгу и работали над ней. Мы также хотим выразить признательность сотрудникам Палеонтологического института имени А. А. Борисяка РАН и сотрудникам и студентам биологического факультета МГУ имени М. В. Ломоносова, жизнь среди которых стимулирует когнитивные функции множеством способов. Будучи высокосоциальными приматами, мы бесконечно благодарны тем, кто всегда был для нас главным источником сил и вдохновения, – нашим прекрасным детям, родителям и друг другу.

 

Предисловие

Инструкция для читателей реальных и идеальных

 

В последние полвека биология развивается так быстро, что за ней и не уследишь. Каждый месяц сотни научных журналов публикуют тысячи статей. Как не утонуть в этом потоке информации? А ведь разобраться в нем многим хотелось бы. В конце концов, именно интенсивный научный поиск, накопление новых знаний, идущее с небывалой скоростью, – это и есть, как нам кажется, самое интересное и важное, что сейчас происходит в мире.

Задача этой книги – немного помочь тем, кому интересно следить за развитием биологической науки. Мы расскажем о 40 исследованиях, выполненных за последние пять лет биологами, изучающими эволюцию. Надеемся, что книга позволит читателю составить общее (пусть и неполное) представление о том, чем сейчас занимаются биологи‑эволюционисты. Здесь, пожалуй, уместно пояснить, что с эволюцией так или иначе связаны все биологические исследования. Связь, однако, может быть очень косвенной. Таковы, например, описательные работы, где расшифровывается трехмерная структура какого‑нибудь белка или описываются новые виды бабочек. И бабочки, и белки суть результат эволюции. У них есть эволюционная история, восстановив которую мы поймем, как и почему они стали такими, какими мы их видим сегодня. Специалисты, как правило, изо всех сил стараются выяснить происхождение и родственные связи изучаемых бабочек и белков. Результаты таких работ бывают интересными и поучительными. Но в этой книге мы в основном будем говорить об исследованиях, имеющих к эволюции более прямое отношение. Речь пойдет об открытиях, которые либо проливают новый свет на общие законы эволюции (а главным ее законом, как известно, является естественный отбор), либо показывают эволюцию в действии, позволяя в деталях проследить, как отбор прямо у нас на глазах преобразует самые разные живые системы – от лабораторных популяций дрожжей до современных человеческих обществ. К сожалению, за рамками книги остались многие важные направления эволюционной биологии – просто потому, что нельзя объять необъятное. В частности, остался за кадром огромный пласт «исторических» эволюционных исследований, посвященных реконструкции давних событий: от зарождения жизни и выхода растений на сушу до происхождения млекопитающих и заселения Евразии людьми современного типа. Обо всем этом – как‑нибудь в другой раз.

«Главный герой» книги – естественный отбор. Хотя общий принцип отбора вроде бы прост, его формы и проявления завораживают многообразием и сложностью, а результаты порой оказываются весьма далекими от теоретических ожиданий. Что ж, значит, нужно вносить поправки в наши представления об отборе. Мы познакомимся с исследованиями, показывающими, что даже простейшие эволюционные эксперименты способны удивлять специалистов. Увидим, как и почему биологам приходится пересматривать привычные взгляды. Мы также обсудим работы, проливающие свет на генетическую основу отбора – наследственную изменчивость – и на природу процессов, создающих и поддерживающих генетическое разнообразие, без которого эволюция невозможна. Мы увидим, как постепенно проясняются эволюционно‑генетические механизмы появления новых признаков, и попробуем понять, как цепочки никем не запланированных, случайных событий закономерно приводят к усложнению организмов, даже если эти усложнения не приносят ни малейшей пользы. И ознакомимся с новыми данными об эволюционных процессах, идущих в современных человеческих популяциях, и, конечно, с новыми методами исследований, позволяющими получать ответы на вопросы, еще недавно казавшиеся неразрешимыми.

Выбрать 40 исследований из тысяч интересных работ было нелегко (если честно, сначала мы выбрали 200, но потом решили умерить свой пыл). Мы вовсе не утверждаем, что выбранные исследования – самые важные из всех публикаций последних пяти лет. Мы старались подбирать работы не только важные (с нашей субъективной точки зрения), но и яркие, занятные, поучительные и при этом не запредельно сложные. Впрочем, последнее условие не всегда удавалось соблюсти: что поделаешь, бывают захватывающе интересные исследования, где самая суть – в замысловатых подробностях. Иными словами, мы пытались выбрать такие открытия, о которых преподаватели любят рассказывать, а школьники и студенты – слушать.

Хотя тема естественного отбора проходит красной нитью через все исследования, о которых пойдет речь, книга все равно вышла похожей на эклектичный коллаж. Но так уж устроена наука: из множества разрозненных, с трудом добытых фактов лишь постепенно складывается более глубокое понимание мира. Выбранные исследования не связаны жестко каким‑то единым сюжетом, как это зачастую бывает в научно‑популярных книгах. Трудно придумать единый сюжет для описания текущего состояния дел в такой обширной и динамичной области знания, как эволюционная биология. И потом, идеи идеями, но в биологических исследованиях важнее всего конкретика: как устроен изучаемый объект, что могут дать применяемые методы, каковы их ограничения. Без этой конкретики и контекста любая идея, пусть самая логичная и красивая, не будет иметь большой ценности. Этим биология отличается от точных наук. Она продвигается вперед маленькими шажками конкретных исследований. Мы присмотримся к этим шажкам, попробуем вникнуть в детали, а глобальные обобщения и футуристические прогнозы пусть попробует сделать наш читатель, смелый и масштабно мыслящий.

Наш идеальный читатель, как мы его себе представляем, – личность, надо признать, своеобразная. Он всерьез интересуется биологией. Уже прочел несколько биологических книг, но ему все мало. Скорее всего, он прочел и наши предыдущие книги: «Рождение сложности» (2010), «Эволюция человека» (2011) и «Эволюция. Классические идеи в свете новых открытий» (2014). Книга, которую вы держите в руках, продолжает этот ряд.

Наш идеальный читатель, даже разбуженный среди ночи, не спутает нуклеотиды с аминокислотами и не забудет, чего четыре, а чего двадцать. Его не испугать «регуляторной генной сетью», «отношением значимых замен к синонимичным» и даже «сайтом связывания транскрипционного фактора». Для неидеальных читателей мы старались пояснять термины по ходу изложения, а в конце книге сделали словарик. Более того, мы даже умудрились ни разу не упомянуть «сайт связывания транскрипционного фактора», равно как и многие другие длинные, пугающие термины, без которых серьезные биологи чувствуют себя неуютно. Оценит ли неидеальный читатель эту жертву?..

Нас иногда критикуют за нечуткое отношение к неподготовленным читателям, и правильно делают. В свое оправдание можем лишь робко заметить, что биологической литературы для неподготовленных читателей и так уже очень‑очень много. У неподготовленных читателей сегодня нет проблем с легким чтивом по биологии. На Западе нынче вообще принято буквально в каждой научно‑популярной книге подробнейшим образом разжевывать одни и те же азы из школьной программы. Если вы увлечетесь такими книгами, то раз за разом будете читать, что такое белки, что такое ДНК, что такое репликация с транскрипцией да что такое генетический код. Скажем по секрету, некоторые из нас уже просто видеть не могут этих разъяснений, так они опротивели. Забота о неподготовленных читателях, надо признать, осуществляется с размахом.

Мы сочли своим долгом позаботиться о читателях мало‑мальски подготовленных, ведь и таких немало. И давайте договоримся. Если, допустим, вы не понимаете, почему вдруг в разговоре об аминокислотах, составляющих белки, появляется число 20 (или число 4 в разговоре о нуклеотидах), или если термины «гомогаметный пол» и «инбредная депрессия» повергают вас в настолько глубокий ступор, что вы не можете ни поискать объяснение, которое почти наверняка дается где‑нибудь рядом, выше/ниже по тексту, ни заглянуть в словарик, ни погуглить незнакомое слово, то вот что нужно сделать. Срочно, прямо сейчас, закройте, пожалуйста, эту толстую книгу и положите, откуда взяли. Ну ее.

Впрочем, погодите. Мы чуть не забыли сказать, что у нашей книги есть одно достоинство, слегка смягчающее указанные недостатки. Главы можно читать в любом порядке и не обязательно целиком. В начале каждой мы кратко сообщаем основные выводы. Какие‑то исследования вас, возможно, совсем не заинтересуют, а другие заинтересуют лишь настолько, чтобы прочесть краткую выжимку. Захотите – вернетесь к пропущенной главке (Исследованию № Х) позже.

Ну а те герои, которые осилят всю книгу целиком, получат, мы надеемся, разностороннее представление о том, чем занимаются сегодня эволюционные биологи, над какими проблемами они бьются и какие открытия совершают. Мы чуть было не добавили «и зачем все это нужно», но вовремя спохватились. Слишком сложный вопрос. Мы не знаем, будет ли какая‑то практическая польза от того, что ученые выяснят, зачем нужно половое размножение, почему меняется форма клюва у галапагосских вьюрков и как влияют на наше здоровье гены, унаследованные от неандертальцев. Может, будет, а может, и нет. Если уж совсем начистоту, нами, эволюционными биологами, движет в основном любопытство, а не прагматизм. Нам повезло жить и работать в странную эпоху, когда некоторые общества почему‑то считают правильным направлять крошечную, но все же не бесконечно малую часть своих ресурсов на фундаментальную науку, не сулящую выгод в ближайшее время. Это новое явление: в прежние времена подобные занятия, как правило, были уделом отдельных экзальтированных представителей высших классов, кто мог позволить себе роскошь витать в эмпиреях. Либо монахов, ученой братии на казенном довольствии и при библиотеках. Теперь же получить необходимое образование и заняться фундаментальной наукой может чуть ли не любой желающий. Сдается нам, долго это не продлится. Главное – побольше успеть, пока они там не спохватились. И дело не только в том, что знать, как устроен мир и откуда что взялось, невероятно интересно. Крупный мозг, способный многое понять, – главная отличительная особенность нашего вида. Понимание делает нас людьми. Это и есть, как нам кажется, самая практическая из всех практических польз.

Итак, читать главы можно в произвольном порядке. Чтобы помочь вам сориентироваться, мы снабдили каждый рассказ такими значками:

 

 

Значком «мозг» обозначена сложность раздела. Если такой значок один, то перед вами простая глава, двумя значками помечены рассказы средней сложности, тремя – самые заковыристые разделы, требующие умственных усилий. Кто не хочет напрягаться, может выбирать «одномозговые» главы, кто любит головоломки, пусть попробует «трехмозговые». Количество профессорских шапочек (их тоже может быть от одной до трех) отражает важность исследования для высокой науки и общего понимания проблемы. Ну а по количеству значков «круто!» читатель может судить о практичности, занятности и эффектности исследования. Один значок предупреждает о занудстве, три – об открытиях, о которых хочется срочно рассказать знакомым. Все оценки, разумеется, – наш полный произвол и личные пристрастия. Многие читатели с ними не согласятся. Но все же мы надеемся, что они помогут ориентироваться в разнообразии фактов и открытий, о которых рассказывает эта книга.

 

Исследование № 1

Исследование № 2

Исследование № 3

«Эволюция умнее, чем ты»: рождение экологического разнообразия

 

Эволюция не останавливается, организмы приспосабливаются к среде обитания все лучше и лучше даже при неизменных условиях. Но этого мало: даже самая простая среда с точки зрения эволюционирующих в ней организмов оказывается весьма сложной, предоставляющей много альтернативных возможностей. Какой из них следует воспользоваться? Это уж как получится. Одни особи могут повышать приспособленность, подстраиваясь под одни факторы среды, другие – под иные. При этом обе группы, меняясь, неизбежно будут менять и среду обитания друг для друга, и к этим изменениям тоже придется приспосабливаться. В итоге изначально однородная популяция может разделиться на две взаимозависимые, нуждающиеся друг в друге части. Возможно ли такое наблюдать? Оказывается, да. И это еще один замечательный, вполне логичный, хотя и непредвиденный результат долгосрочного эксперимента Ленски, обнародованный в 2017 году. Здесь речь идет о 60 000 поколений. В ходе исследования выяснилось, что за это время как минимум в девяти популяциях из двенадцати произошла экологическая дивергенция: исходно одинаковые бактерии разделились на экологические разновидности. Эти разновидности взаимодействуют друг с другом, сосуществуя вполне по‑соседски. Внутри каждой разновидности эволюция продолжается своим ходом, причем дальнейшие изменения направляются как предшествующей эволюционной историей, так и меняющимся экологическим окружением. Таким образом, эволюция перехитрила исследователей, надеявшихся изучить действие мутаций и отбора в «предельно простой» искусственной системе.

 

 

Эксперимент Ленски изначально был спланирован так, чтобы свести к минимуму все «осложняющие обстоятельства»: изменения среды, генетический обмен, экологические взаимодействия между организмами. Ученые хотели получить в чистом виде самый главный эволюционный процесс – адаптацию к среде на основе мутаций и отбора. Однако, как метко заметил биохимик Лесли Орджел, «эволюция умнее, чем ты». Он имел в виду, что исследователям, утверждающим, будто эволюция на что‑то не способна, скорее всего, просто не хватает воображения. Как выясняется, эволюция не боится сложностей и «в чистом виде» ничего не демонстрирует, порождая, вопреки чаяниям ученых, куда более замысловатые результаты, чем от нее ждут. В подопытных популяциях Ленски, существующих, казалось бы, в самых простых условиях, какие только можно придумать, стали сами собой зарождаться экологические взаимодействия, основанные на диверсификации (разделении) ниш. А это, в свою очередь, заставляет бактерий заново приспосабливаться к меняющейся биотической обстановке (Good et al., 2017).

На этот раз Ленски и его коллеги провели генетический анализ всей замороженной «ископаемой летописи» эксперимента, накопившейся за 60 000 бактериальных поколений и насчитывающей около 1440 проб (по 120 проб на каждую из двенадцати популяций). Для каждой пробы был проведен метагеномный анализ с 50‑кратным покрытием. Это значит, что из пробы выделяли ДНК и секвенировали случайные фрагменты геномов до тех пор, пока каждый участок генома кишечной палочки не оказался «прочтен» в среднем 50 раз. Этого оказалось достаточно, чтобы идентифицировать все новые мутации, которые возникали в подопытных популяциях и достигали частоты не менее 10 % (то есть встречались как минимум у каждой десятой бактерии) хотя бы в двух пробах. Мутации, не получившие столь широкого распространения, не учитывались, потому что их трудно отличить от случайных ошибок секвенирования. В итоге получилась детальная реконструкция эволюционного процесса в двенадцати популяциях.

Выводы о том, что рост приспособленности замедлился, но не прекратился, подтвердились (см. Исследование № 1). Темп накопления новых мутаций остался высоким.

Главное же открытие состоит вот в чем. Динамика накопления мутаций не вписывается в простейшую модель, согласно которой эволюция монокультуры бесполых организмов в стабильных условиях сводится к последовательной фиксации отбором вновь возникающих полезных мутаций. Эта модель не может объяснить наблюдаемую картину даже с учетом таких осложняющих обстоятельств, как генетический автостоп и клональная интерференция, о которых мы говорили выше.

Оказалось, что многие мутации, достигнув некоторой частоты, вдруг перестают распространяться, то есть двигаться дальше в сторону фиксации (стопроцентной частоты встречаемости). А ведь именно таков должен быть естественный ход событий, если клон с данной мутацией имеет более высокую приспособленность, чем другие бактерии. Может быть, распространение мутации остановилось из‑за того, что появился более приспособленный конкурент? Но тогда прежние чемпионы должны постепенно вытесняться из популяции и исчезать. Однако этого тоже не происходит. Частота мутации начинает колебаться около какого‑то промежуточного значения. Эти колебания могут продолжаться десятки тысяч поколений. В чем же дело?

 

 

Метагеномные данные, полученные для каждой из 1440 проб, представляют собой множество отсеквенированных кусочков ДНК, принадлежащих разным бактериям. Поэтому нельзя сразу понять, какие мутации относятся к одному клону, а какие – к разным. Однако ученым удалось разобраться в этом, проанализировав согласованность изменений частот мутаций во времени (поскольку частоты мутаций, находящихся в одном и том же геноме, меняются синхронно). В итоге выяснилось, что по крайней мере в девяти из двенадцати подопытных популяций в течение длительного времени (свыше 10 000 поколений) имело место устойчивое сосуществование как минимум двух разных клад (эволюционных линий, ветвей). Внутри этих клад шли свои собственные эволюционные процессы, то есть появлялись и фиксировались различные мутации.

Это значит, что в большинстве популяций произошла диверсификация. Разные клады как‑то поделили между собой экологические ниши и стали устойчиво сосуществовать, приспосабливаясь теперь уже не только к изначально заданным условиям среды, но и к специфическому и переменчивому биотическому окружению.

Анализ истории отдельных клад показал, что адаптивная эволюция внутри них продолжается полным ходом: появляются новые полезные (для данной клады) мутации; их частоты растут под действием отбора; вместе с ними распространяются «автостопом» другие (не такие полезные) мутации; многие генетические варианты, достигнув заметной частоты, впоследствии вымирают, вытесненные более удачливыми конкурентами. И все это происходит уже не в масштабах всей популяции, а по отдельности в каждой из клад. Поэтому отчасти теряет смысл оценка приспособленности бактерий по скорости их роста по сравнению с предковым штаммом: ведь теперь их реальная приспособленность зависит еще и от того, насколько успешно они взаимодействуют с соседями по колбе.

Таким образом, эксперимент опроверг чрезмерно упрощенные представления о том, как должна эволюционировать бесполая популяция в стабильной среде. Ничего похожего на замедление и остановку эволюции не наблюдается, запас потенциально полезных мутаций не исчерпывается, и даже темп их накопления практически не снижается (снижается лишь их средняя полезность). Вместо этого мы видим самопроизвольное усложнение сообщества, своего рода симпатрическое видообразование, когда монокультура превращается в экосистему с подразделенными нишами. Так что Лесли Орджел был, конечно, прав насчет того, кто умнее – эволюция или теоретики, считающие, что всё про нее знают.

 

Исследование № 4

Исследование № 5

Исследование № 6

Исследование № 7

Исследование № 8

Исследование № 9

Исследование № 10

Исследование № 11

Исследование № 12

Как спасти детенышей от самцов‑убийц?

 

В качестве экстремального проявления конфликта полов можно рассматривать так называемый мужской инфантицид (или по‑другому – конкурентный инфантицид): самцы убивают детенышей, рожденных самками от других отцов. Не следует думать, что лишь какие‑то единичные виды выработали такое, на первый взгляд, патологически жестокое свойство. Как и в целом конфликт полов, вытекающий закономерно из самой сути полового отбора, так и мужской инфантицид – явление весьма распространенное. На сегодняшний день он известен более чем у сотни видов млекопитающих от хомяков до бегемотов, включая и человекообразных обезьян – горилл и шимпанзе. Несмотря на немыслимую для человека жестокость, мужской инфантицид закономерен, так как помогает детоубийце быстрее произвести собственное потомство. Сравнение данных по поведению, социальной организации и эволюционной истории 260 видов млекопитающих показало, что мужской инфантицид чаще всего развивается при такой социальной организации, которая позволяет немногим самцам монополизировать доступ ко многим самкам. Инфантицид не ведет к радикальным изменениям социальной организации, но увеличивает шансы формирования у самок склонности к промискуитету, который порой оказывается эффективной мерой противодействия мужским попыткам повысить свою приспособленность за счет самок и детенышей.

 

 

Самки многих млекопитающих не способны к новому зачатию, пока кормят детенышей молоком. Инфантицид повышает репродуктивный успех самцов, поскольку сокращает этот период послеродового бесплодия. Впрочем, самец‑детоубийца может повысить свою приспособленность (а отбор – поддержать гены, склоняющие самцов к инфантициду) только при выполнении ряда условий. Во‑первых, убитые детеныши должны быть наверняка чужими. Кроме того, самка, потерявшая детенышей, должна находиться в полном распоряжении детоубийцы: у нее не должно быть существенных шансов спариться с другими самцами, кроме самого убийцы (или, может быть, его ближайших родственников).

Эти простые теоретические соображения подтверждаются тем, что самцы действительно почти всегда убивают только чужих детенышей и почти всегда сами спариваются потом с их матерью. Кроме того, замечено, что инфантицид реже встречается у видов с сезонным размножением, у которых самка, даже лишившись детенышей, все равно не будет способна к новому зачатию до следующего репродуктивного сезона.

Чтобы разобраться, в каких случаях половой отбор сворачивает в сторону инфантицида, Дитер Лукас и Элиз Ушар из Кембриджского университета (Великобритания) проанализировали данные по 260 хорошо изученным видам млекопитающих (Lukas, Huchard, 2014). Для каждого имеется достаточный объем полевых наблюдений, что позволяет с большой уверенностью подразделить рассмотренные виды на практикующие инфантицид (119) и те, у которых данное явление не встречается (141 вид).

Распределение случаев инфантицида по эволюционному дереву показывает, что склонность самцов к детоубийству возникала много раз независимо. Не обнаружилось значимых корреляций между инфантицидом и такими характеристиками жизненного цикла, как продолжительность жизни, число детенышей в выводке, размер новорожденных, длительность периодов беременности и лактации. Единственный параметр жизненного цикла, коррелирующий с инфантицидом, – это сезонность размножения (что отмечалось и ранее): инфантицид отмечен у 76 % видов (из 97), не придерживающихся сезонов, и лишь у 28 % видов (из 134), размножающихся один раз в год. Это согласуется с идеей о том, что инфантицид повышает репродуктивный успех самца, ускоряя возвращение самки в фертильное состояние.

Самый интересный результат – обнаруженная исследователями связь между инфантицидом и социальной организацией. Чаще всего инфантицид встречается у видов, образующих устойчивые разнополые группы: детенышей время от времени убивают самцы 66 % таких видов. Значительно реже инфантицид встречается у одиночек (40 %), а также у видов с чисто женскими группами (23 %).

Реже всего детоубийство встречается у живущих парочками моногамов (18 %). Это ожидаемый результат, потому что строгая моногамия, по идее, должна препятствовать любым проявлениям конфликта полов. Если у вас один половой партнер на всю жизнь, то ваш репродуктивный успех в точности равен его репродуктивному успеху. В этом случае адаптации, повышающие приспособленность одного пола в ущерб другому, просто не могут развиться.

Дальнейший анализ показал, что при групповом образе жизни ключевой параметр, влияющий на вероятность развития инфантицида, – возможность самца монополизировать доступ к нескольким самкам. Так, в разнополых группах у видов с инфантицидом на каждого самца приходится в среднем по 2,5 самки, а у видов, не замеченных в детоубийстве, соотношение полов в группах почти равное. Кроме того, у первых альфа‑самец является отцом в среднем 67 % детенышей в группе, а у вторых – лишь 35 %. Замечено также, что склонность к детоубийству отрицательно коррелирует со «сроком правления» альфа‑самца. Чем короче его царствование, тем вернее он убьет детенышей прошлого владыки. Так, у видов с инфантицидом самка за этот срок успевает произвести на свет в среднем только два выводка, а у видов без инфантицида – четыре. Такая зависимость связана, скорее всего, с остротой конкурентной борьбы: ведь если самцу приходится тратить слишком много сил на захват власти и ее удержание, то ему некогда ждать, пока с таким трудом завоеванные самки спокойно выкормят детенышей от прежних мужей.

Распределение признаков по эволюционному дереву показало, что именно социальная организация служит стимулом для развития склонности самцов к детоубийству, а не наоборот. Появление в какой‑либо эволюционной линии тенденции жить разнополыми группами, а особенно разнополыми группами с численным преобладанием самок, повышает вероятность развития инфантицида у представителей этой линии в будущем. Но вот обратное действие подтвердить не удалось. Появление инфантицида, по‑видимому, не влияет на вероятность радикальных изменений социальной организации, таких как переход от одиночной жизни к социальности и обратно или объединение самок в сплоченные группы.

Однако, как выяснилось, у видов с инфантицидом самки нередко вырабатывают различные контрадаптации, например склонность к промискуитету. Если самка спаривается со многими самцами, начинаются так называемые спермовые войны: конкуренция между самцами за право оплодотворения ведется уже на уровне сперматозоидов (см. Исследования № 13, 15 и 38). Больше потомства начинают оставлять те самцы, что производят больше спермы. О спермовых войнах можно судить по размеру семенников – чем они больше, тем выше интенсивность спермовых войн.

Исследователи обнаружили, что во многих эволюционных линиях после появления инфантицида происходило постепенное увеличение семенников у самцов. В ряде случаев это заканчивалось тем, что у видов с крупными семенниками инфантицид исчезал. Это логично: убивать детенышей становится невыгодно, если самки так или иначе спариваются с множеством самцов. В такой ситуации, во‑первых, любой детеныш может оказаться отпрыском детоубийцы, во‑вторых, нет никакой гарантии, что после убийства детеныша несчастная мать будет спариваться именно с этим самцом и именно от него забеременеет.

Здесь у читателя может возникнуть резонный вопрос: откуда самка может знать, что, спариваясь с несколькими самцами, она тем самым снижает вероятность развития инфантицида или способствует его исчезновению в будущем? Разумеется, самка этого не знает. Чтобы рассматриваемый эволюционный механизм работал, то есть чтобы отбор поддержал мутации, повышающие склонность самки к промискуитету, тот должен давать ей немедленный репродуктивный выигрыш. Это возможно, если учесть, что инстинкт детоубийства не может развиться, если с самого начала не ограничен определенными рамками. Врожденная поведенческая программа «Убей детеныша!», не имеющая ограничителей, никогда не будет поддержана отбором, поскольку приведет к убийству собственных детей. Другое дело, если программа изначально содержит ограничивающие условия, например: «Убей детеныша, если не спаривался с его матерью». Если детоубийственные инстинкты устроены примерно таким образом, то промискуитет будет давать самке немедленное репродуктивное преимущество, поскольку ни один из самцов, с которыми она спаривалась, не обидит ее детенышей. В этом случае мутации, повышающие склонность самок к промискуитету, могут быть поддержаны отбором.

Хуже, если самец умеет напрямую, по запаху отличать своих отпрысков от чужих, – тогда сексуальная раскрепощенность самки не введет его в заблуждение. Может быть, так обстоит дело у млекопитающих с особо тонким обонянием – вроде мышей. В этом случае возможны иные варианты женского эволюционного ответа на инфантицид – менее дерзкие и даже упреждающие желания альфа‑самца. Речь идет о так называемом эффекте Брюс – автоматическом прерывании беременности у самок после смены доминирующего самца. Так самка снижает свои репродуктивные потери в условиях, когда действующий альфа‑самец почти наверняка убьет детенышей, рожденных не от него. Это иногда встречается даже у обезьян. Например, показано, что у гелад (родичей павианов) 80 % беременностей у самок прерывается в первые недели после смены альфа‑самца (Roberts et al., 2012).

Таким образом, инфантицид является скорее следствием, чем причиной радикальных изменений социальной организации. При этом, однако, он может быть важным фактором эволюции семейных отношений внутри группы. Спаривание со многими партнерами оказывается эффективным средством женского противодействия попыткам самцов монополизировать репродуктивный потенциал самок и повысить свою приспособленность за их счет. Эта стратегия иногда настолько успешна, что самцы со временем вовсе перестают покушаться на жизнь детенышей.

 

Исследование № 13

Исследование № 14

Из‑за конкуренции самцов страдают самки

 

Удивительно, насколько логичными становятся самые сложные явления, если смотреть на них сквозь призму отбора. Конфликт полов – многоликий и многообразный – становится понятным и объяснимым с позиций полового отбора. Добавим к половому отбору отбор на выживаемость – получим поддержание полиморфизма в популяции (см. Исследование № 10). Скомбинируем половой отбор и родственный – и вот уже у родственников острота конкуренции за партнеров снижается, а конфликт полов сглаживается. Еще бы, ведь эволюционная задача у родственников общая – распространить и передать следующим поколениям сходные, родственные наборы генов. Именно так, согласно теории, должно обстоять дело. Кому‑то это может показаться удивительным, но даже в неоднозначных ситуациях, когда действуют разнонаправленные векторы отбора – полового и родственного, – практика подтверждает теорию. Так, были проведены эксперименты, в которых удалось смоделировать совместное действие полового и родственного отбора. Мы рассмотрим два из них: один – на плодовых мушках дрозофилах, другой – на корневых клещах. Оба исследования показывают, насколько предсказуемыми могут быть результаты отбора (если, конечно, в распоряжении исследователей есть адекватные теории, позволяющие эти результаты предсказывать). В первом эксперименте, поставленном биологами из Оксфордского университета (Великобритания), за самок конкурировали либо родственные друг другу самцы, либо неродственные. Самцы‑чужаки, помещенные в пробирку с самкой, чаще дрались и агрессивнее ухаживали за дамой, чем родные братья в такой же ситуации. Из‑за этого самка быстрее теряла с возрастом плодовитость и за свою жизнь успевала оставить меньше потомков. А если за самкой ухаживали братья, то она дольше оставалась плодовитой и производила в итоге больше потомства. Так что братские гены тоже оставались в выигрыше. О втором эксперименте мы расскажем в следующей главе.

 

 

Различие мужских и женских репродуктивных стратегий изначально основано на том, что самец может произвести гораздо больше сперматозоидов, чем самка – яйцеклеток. Поэтому в типичном случае женский репродуктивный ресурс – в дефиците, а мужской – в избытке. Как следствие, репродуктивный успех самца сильно зависит от исхода его конкуренции с другими самцами. Для самок в большинстве случаев конкуренция за самцов менее актуальна. Самцу выгодно спариться с максимальным количеством самок, а для этого нужно соревноваться с другими самцами, преследующими ту же цель. Репродуктивный успех самки обычно зависит скорее от «качества», чем от количества ее половых партнеров (хотя иногда количество тоже бывает важно; с


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.066 с.