Достоинства и недостатки передачи винт-гайка скольжения — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Достоинства и недостатки передачи винт-гайка скольжения

2022-01-17 32
Достоинства и недостатки передачи винт-гайка скольжения 0.00 из 5.00 0 оценок
Заказать работу

Основные достоинства:

1.возможность получения большого выигрыша в силе;

2. высокая точность перемещения и возможность получения медленного движения;

3. плавность и бесшумность работы;

4. большая несущая способность при малых габаритных размерах;

5. простота конструкции.

Недостатки передач винт-гайка скольжения:

1.большие потери на трение и низкий КПД;

2. затруднительность применения при больших частотах вращения.

 

Достоинства и недостатки шариковинтовой передачи

Основные достоинства:

1. малые потери на тре­ние. КПД передачи достигает 0,9 и выше (сборка без предварительного натяга);

2. высокая несущая способ­ность при малых габаритах;

3. низкий приведенный коэффициент трения покоя и высокая кинематическая чувствительность (возможность получения малых и точных перемещений);

4. отсутствие осевого и радиального зазоров (то есть мертвого хода);

5. надежная работа в широком диапазоне температур в вакууме;

6. малый износ рабочих поверхностей винта и гайки, обеспечивающий высокую точность и равномерность поступательного движения;

7. высокий ресурс.

Недостатки.

1. Требование высо­кой точности изготовления, слож­ность конструкции гайки.

2. Относительная сложность и трудоемкость изготовления (особенно операции шлифования специального профиля резьбы гайки и ходового винта).

3. Требо­вание хорошей защиты передачи от загрязнений.

Применение передачи “винт-гайка”

Наиболее характерными областями применения передачи винт – гайка являются:

- поднятие грузов (домкраты);

- нагружение в испытательных машинах;

- осуществление рабочего процесса в станках (винтовые процессы);

- управление оперением самолетов (закрылки, руки направления и высоты, механизмы выпуска шасси и изменения стреловидности крыла);

- перемещение рабочих органов робота;

- точные делительные перемещения (в измерительных механизмах и станках).

В шариковинтовых передачах при вращении винта шарики вовлекаются в движение по винтовым канавкам (см. рис. 4), поступательно перемещают гайку и через перепускной канал возвращаются обратно. Перепускной канал выполняют между соседними или между первым и последним (рис. 4) витками гайки. Таким образом, перемещение шариков происходит по замкнутой внутри гайки траектории.

Рис. 4. Передача винт-гайка с трением качения

В станкостроении применяют трехвитковые гайки. Пе­репускной канал выполняют в специальном вкладыше, который встав­ляют в овальное окно гайки. В трехвитковой гайке предусматривают три вкладыша, расположенные под углом 120° один к другому и смещен­ные до длины гайки на один шаг резьбы по отношению друг к другу. Таким образом, шарики в гайке разделены на три (по числу рабочих вит­ков) независимые группы. При работе передачи шарики, пройдя по вин­товой канавке на винте путь, равный длине одного витка, выкатываются из резьбы в перепускной канал вкладыша и возвращаются обратно в ис­ходное положение на тот же виток гайки.

Шариковинтовые передачи выполняют с одной или чаще с двумя гайками, установленными в одном корпусе. В конструкциях с двумя гайками наиболее просто исключить осевой зазор в сопряжении винт-гайка и тем самым повысить осевую жесткость пере­дачи и точность перемещения. Устраняют осевой зазор и создают пред­варительный натяг путем относительного осевого (например, с помо­щью прокладок) или углового смещения двух гаек.

Наибольшее распространение получил полукруглый профиль канавок с радиусом, превышающим на 3…5% радиус шариков, и с углом контакта α = 45° (рис. 4.1, а).

Рис.4.1. Профиль канавок передачи винт-гайка качения

Успешно применяют также профиль «стрельчатая арка» (рис. 4.1, б), который сложнее в изготовлении, но позволяет создать предварительный натяг подбором диаметров шариков.

В станкостроении шариковинтовые передачи изготавливают централизованно по ОСТ 1-1-72-6-81 под нагрузку от 9 до 90 кН (0,9…9,0 т).

Прямолинейный профиль резьбы (треугольный, трапециевидный) является наиболее технологичным, но значительно уступает по нагрузочной способности криволинейному (так допускаемая нагрузка на шарик, находящийся в желобе с профилем в виде дуги окружности, более чем в три раза выше допускаемой нагрузки на шарик, лежащий на плоской поверхности треугольного или трапецеидального профиля). Поэтому прямолинейный профиль резьбы применяют в шариковинтовой передаче для восприятия небольших осевых нагрузок в приборах.

На рис. 4.2 показан шариковинтовой механизм, применяемый в узле изменения стреловидности крыла сверхзвукового самолета. Движение к вращающемуся винту 6 передается от конического редуктора через зубчатую цилиндрическую передачу 2, понижающую частоту вращения винта. С помощью винтовой резьбы и шариков 4 вращение винта преобразуется в поступательное перемещение гайки 5. Непрерывность циркуляции шариков обеспечивается перепускным каналом 3, выполненным в гайке. Узлом крепления 7 гайка связана с крылом самолета. Винт в корпусе ШВМ 1 фиксируется радиальными 9 и радиально-упорными 10 шарикоподшипниками. Для предохранения пары винт-гайка от загрязнения в конструкции ШВМ предусмотрен защитный кожух 8.

Рис.4.2. Шарико-винтовой механизм привода изменения стреловидности крыла самолета

Роликовинтовые передачи

Постоянно растущие требования к передачам винт–гайка со стороны привода выявили определенные ограничения шариковинтовых передач, в частности по редукции, предельной скорости, жесткости, долговечности и грузоподъемности.

В связи с этим в качестве альтернативы шариковинтовым передачам стали появляться другие виды передач винт – гайка.

В середине 40-х годов появились несоосные передачи (рис.5). Несоосная (эксцентриковая) передача состоит из винта и сопряженной с ним гайки, у которой средний диаметр резьбы больше среднего диаметра резьбы винта и которая установлена на подшипниках 2 в корпусе 4. Оси винта и гайки не совпадают. Если обе оси неподвижны, а углы подъема резьб на винте и гайке неодинаковы, то при вращении винта гайка вращается в подшипниках и одновременно вместе с корпусом перемещается в осевом направлении. Описание различных конструкций несоосных передач дано в работе. Основной недостаток несоосной передачи – неуравновешенность момента пары сил в резьбовом сопряжении. Этот момент изгибает винт и дополнительно нагружает подшипники. Ввиду малой несущей способности и малой жесткости несоосные передачи не получили широкого применения.

Известны конструкции передач винт – гайка, которые отличаются от шариковинтовых передач использованием гладких роликов в качестве промежуточных тел качения.

Для оценки уровня качества известных роликовинтовых передач целесообразно принять в качестве базового изделия широко применяемую шариковинтовую передачу.

Диапазон выбора стабильного передаточного отношения шариковинтовых передач узок. Обычно величины перемещения гаек за оборот винта составляют 5, 10, 20 мм. Для возможности выбора оптимального передаточного отношения необходимо расширение этого диапазона. Известные роликовинтовые передачи с заданным скольжением роликов вдоль витков резьбы винта обеспечивают расширение диапазона выбора передаточного отношения, но отличаются дополнительным трением скольжения, низким КПД, низкой плавностью работы.

Высокая предельная частота вращения винта роликовинтовых передач по сравнению с шариковинтовыми передачами позволяет повысить производительность машин и оборудования на базе роликовинтовых передач.

Статическая и динамическая грузоподъемность роликовинтовых передач выше, чем шариковинтовых, но увеличение нагрузок, скоростей и ускорений проектируемых машин и оборудования требует дальнейшего повышения статической и динамической грузоподъемности передач.

Приведенные моменты инерции шариковинтовых передач и передач с короткими роликами при одинаковых диаметрах винтов практически не отличаются. При одинаковой грузоподъемности приведенный момент инерции передачи с короткими роликами меньше приведенного момента инерции шариковинтовой передачи. Стремление уменьшить время разгона и торможения привода требует дальнейшего уменьшения приведенного момента инерции передач, в особенности в приводах с малоинерционными двигателями.

Жесткость роликовинтовых передач выше жесткости шариковинтовых передач, но требования к передаче как динамическому звену следящего привода обусловливают поиск новых возможностей повышения жесткости и снижения момента инерции передач.

При одинаковых классах точности резьб кинематические точности шариковинтовых и роликовинтовых передач практически не отличаются. Недостаток шариковинтовых передач – в возникновении импульсов при входе шариков в канал возврата и выходе из него. При этом может нарушаться плавность работы передачи. Для получения высокой разрешающей способности, чувствительности приводов линейных перемещений необходима разработка передач с высокой редукцией и плавностью работы.

Роликовинтовые передачи, так же как и шариковинтовые передачи, относятся к передачам смешанного трения: трения качения и трения скольжения.

КПД роликовинтовых передач без натяга гаек и при малой нагрузке ниже КПД шариковинтовых передач. Однако при натяге или значительной нагрузке в шариковинтовых передачах без сепараторных шариков возникает существенное трение в точках контакта соседних шариков из-за разных направлений окружных скоростей соседних шариков в точках контактов, а также существенное трение в канале возврата шариков. Кроме этого при значительной нагрузке шариковинтовых передач пятна контактов в резьбовых сопряжениях из-за более тесного контакта и из-за меньшего числа точек контактов получаются большими по размеру, чем в роликовинтовых передачах, что ведет к увеличению момента сил трения. Поэтому при натяге или существенной нагрузке различие КПД шариковинтовых и роликовинтовых передач уменьшается. Требования снижения энергозатрат и повышения плавности работы побуждают к поискам путей уменьшения сил трения в передачах.

Таким образом, требования к передачам в составе привода оказываются существенно выше, чем возможности шариковинтовых передач и передач с короткими роликами типа SR, SV.

Отличительной особенностью рассматриваемых нами роликовинтовых передач является использование в качестве промежуточных тел качения резьбовых роликов, которые расположены в пространстве между винтом и гайкой или установлены в водиле. Резьбовой ролик с треугольной резьбой выпуклого профиля (рис.6) при угле профиля 2α=π/2 имеет с винтом или гайкой сопряжение, аналогичное сопряжению с винтом или гайкой шариков, диаметр D которых на 40% больше среднего диаметра резьбы роликов, а их число равно числу витков резьбы ролика.

Роликовинтовая передача, так же, как и шариковинтовая, относится к многопоточным передачам, в резьбовых сопряжениях которых усилие передается через большое число параллельно нагруженных точек контактов.

Рис. 5. Несоосная передача: 1 – винт; 2- подшипники; 3 – гайка; 4 – корпус

 

Рис. 6. Резьбовой ролик: d 2 – средний диаметр резьбы; DW – приведенный диаметр резьбы

Известны передачи с резьбовыми роликами, установленными в водиле на подшипниках. В передаче на рис. 7 в водиле 1 на подшипниках 4 установлены резьбовые ролики. Резьбовые ролики сопрягаются с гайкой-штоком 3. При вращении водила ролики совершают планетарное движение и перемещают закрепленную от вращения гайку-шток в осевом направлении.

В передаче на рис. 8 винт сопрягается с резьбовыми роликами, установленными в водиле 3 на подшипниках 4. При вращении винта и закрепленном от вращения водиле водило перемещается в осевом направлении. На рис.9 показана передача, отличающаяся от передачи на рис.8 тем, что водило непосредственно фиксирует оси роликов 2 только в окружном направлении. Осевая нагрузка передается не через индивидуальные подшипники роликов, а через конические кольца 5, охватывающие все ролики и установленные на подшипниках 4 в водиле 3.

В патенте США, заявленном 13.06.84, представлена конструкция передачи (рис.10), в которой винт сопрягается с роликами, имеющими кольцевую нарезку. Ролики установлены в неподвижном водиле 3 и сопрягаются с гайкой 4, имеющей кольцевую нарезку. Гайка установлена в корпусе 5 на подшипниках 6. Такая конструкция была разработана нами еще в 1975 г. Возможность реализации такой конструкции и ее нецелесообразность из-за отсутствия преимуществ по кинематическим и прочностным характеристикам перед известными передачами типа Transrol была описана в 1983 г. до подачи заявки США.

Рис. 7. Передача винт-водило с резьбовыми роликами – гайка-шток:


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.