Нейроны, которые вместе активируются, формируют связи — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Нейроны, которые вместе активируются, формируют связи

2021-01-31 317
Нейроны, которые вместе активируются, формируют связи 0.00 из 5.00 0 оценок
Заказать работу

 

За последние 20 лет было получено множество подтверждений возможности изменения силы синапса. Эта возможность лежит в основе механизма синаптической пластичности, или нейропластичности. Синаптическая связь между нейронами способна меняться.

Синаптическая пластичность считается основным механизмом, с помощью которого реализуется феномен памяти. Вопросу улучшения памяти в этой книге посвящена глава 4. Сейчас отметим только тот факт, что при запоминании новой информации происходит изменение синаптических связей. Мозг был бы просто неспособен фиксировать новое, если бы его структура сохранялась неизменной. Таким образом, запоминание нового – это перенастройка мозга. Когда возникают связи между идеями и образами, также создаются и связи между нейронами, кодирующими информацию об этих идеях и образах.

Явление нейропластичности выражается в следующей фразе: «Используй, или потеряешь». Использование нейронных связей, представляющих определенный навык, приводит к их укреплению. Если же навык не задействован, то нейронные связи ослабевают. Похожим образом снижается мышечная сила, если прекратить регулярные физические упражнения.

«Нейроны, активирующиеся вместе, формируют связи» – вот удачное описание того, как меняется структура мозга под влиянием нового опыта. Чем чаще вы повторяете определенное действие (например, произносите слова с акцентом или вспоминаете какое-то событие из своего прошлого), тем прочнее становится нейронная связь между клетками мозга, которые совместно активировались для осуществления этого действия. Чем чаще активируется нейронная связь, тем выше вероятность активации этих нейронов в будущем.

Аналогично тому как эта фраза стала практически мантрой в нейрофизиологии, верно и противоположное утверждение: «Нейроны, активирующиеся по отдельности, не формируют связь». Это значит, что между нейронами, которые не синхронизированы, нейронная связь не образуется. Этот принцип функций нейронов объясняет механизм забывания.

Иными словами, чем чаще вы что-то делаете, тем выше вероятность, что вы сможете сделать это и в будущем. Именно поэтому бейсболисты не жалеют времени на отработку удара битой, игроки в гольф вновь и вновь выходят на поле, а пианисты практикуются часами. Тот же алгоритм применим и к мыслительному процессу. Чем больше вы думаете о своей тете Матильде, тем чаще ваши мысли будут возвращаться к ней. Повторение перенастраивает мозг и формирует привычку.

При совместной активации нейронов скорость их совместной активации постепенно повышается. Это ведет к увеличению продуктивности, так как с большей точностью определяется число нейронов, необходимых для выполнения определенного навыка. Например, в самом начале процесса обучения езде на велосипеде у новичка задействовано больше мышц, а значит, и больше нейронов, так как он пока только учится координировать движения. В дальнейшем, когда он начинает ездить на велосипеде увереннее и быстрее, ему требуется прилагать меньше мышечных усилий, то есть задействовать меньшее число нейронов. Произошло объединение необходимых нейронов при помощи нейронных связей.

Чем лучше человек осваивает определенный навык, тем больше у него становится участок мозга, отвечающий за выполнение этого навыка. Альваро Паскуаль-Леоне из Медицинской школы Гарвардского университета использовал метод транскраниальной магнитной стимуляции[4] для измерения отдельных участков коры головного мозга. Он исследовал слепых людей, способных читать по системе Брайля, и обнаружил, что карты коры мозга для пальцев, занятых при чтении рельефно-точечного письма, больше, чем карты коры мозга для остальных пальцев, а также для пальцев нормально видящих людей. Иными словами, повышенная чувствительность пальцев, занятых при чтении по системе Брайля, требовала больше пространства в структуре мозга. Таким образом, выученные движения стимулировали процесс нейропластичности, в результате которого в мозге было создано дополнительное пространство для этого навыка.

В еще одном эксперименте, посвященном изучению нейропластичности, участвовали музыканты, играющие на струнных инструментах. Исследователи выясняли, изменилась ли у них структура мозга для выделения дополнительного пространства для их навыка. У музыкантов и не-музыкантов не наблюдалось существенных отличий в том, какой участок сенсомоторной зоны (области в центральной части мозга, отвечающей за движения и физическое восприятие) контролировал пальцы правой руки (у музыкантов-правшей).

При этом наблюдались значительные различия в размере участка мозга, отвечавшего за пальцы левой руки (у музыкантов-правшей). Для игры на струнном музыкальном инструменте пальцы руки со стороны грифа (у правшей – левой) должны быть гибкими и натренированными. Участок коры мозга, контролирующий эти пальцы, был значительно больше у музыкантов, чем у не-музыкантов. Эта разница оказалась еще заметнее у людей, начавших занятия музыкой в возрасте до 12 лет. Хотя нейропластичность, обусловленная выполнением определенного действия, возможна и во взрослом возрасте, она проявляется тем сильнее, чем раньше человек начал играть на музыкальном инструменте и чем дольше он практикуется.

Менять структуру мозга посредством нейропластичности способны не только практические действия, но и одна лишь мысль об этих действиях, их визуализация. Например, ученые продемонстрировали, что простая визуализация игры на пианино стимулирует изменение участка мозга, отвечающего за движение пальцев при настоящей игре на пианино. Таким образом даже мысленная тренировка может способствовать перенастройке мозга.

 

Механизм нейропластичности

 

Усиление синаптической передачи между двумя нейронами, сохраняющееся на протяжении длительного времени после воздействия на синаптический проводящий путь, называется долговременной потенциацией (ДВП). В результате этого процесса усиливается нейронная связь между клетками, и они становятся более способными к совместному активизированию в будущем. Таким образом, процесс ДВП относительно длительный.

В результате ДВП происходит усиление сходства между нейронами за счет изменения их электрохимического взаимодействия. На стороне передачи синапса увеличивается количество глутаминовой кислоты (возбуждающего нейромедиатора), вследствие чего на стороне приема происходят такие изменения, чтобы принять большее ее количество. Напряжение на стороне приема в состоянии покоя увеличивается, в результате притягивается больше глутаминовой кислоты. Если синаптическая связь между этими нейронами продолжает сохраняться, в работу вступают гены этих нейронов для создания инфраструктуры и укрепления этой связи.

Одним из наиболее важных элементов процессов нейропластичности и нейрогенеза является нейротрофический фактор мозга (BDNF, от англ. brain-derived neurotrophic factor) белок человека, кодируемый геном BDNF, способствующий росту клеток. BDNF помогает создать, вырастить и сохранить инфраструктуру клеточной сети. Сегодня это одна из наиболее актуальных областей исследования в нейрофизиологии, и более тысячи статей уже написаны об удивительных функциях данного белка. Многие даже называют его «чудом роста», так как при попадании в клетки он стимулирует их рост. Эта способность была наглядно продемонстрирована в эксперименте, в ходе которого исследователи распылили BDNF на нейроны в чашке Петри. И у нейронов появились новые отростки: подобное происходит в мозге в процессе обучения и развития.

Механизм действия BDNF бывает разным. Он может действовать внутри клетки и активировать гены, повышающие выработку белков, серотонина и даже BDNF. Он может присоединяться к рецепторам синапса, стимулируя поток ионов, что ведет к повышению напряжения и усилению способности образовывать синаптические связи между нейронами. В целом BDNF предотвращает отмирание клеток, повышает их жизнеспособность и скорость роста. Активизация BDNF происходит опосредованно с помощью глутаминовой кислоты. BDNF повышает выработку внутренних антиоксидантов и защитных белков, а также стимулирует процесс ДВП, лежащий в основе нейропластичности.

ДВП и BDNF работают в одной связке. Исследователи, изучающие функции мозга у разных животных, продемонстрировали, что стимулирование процесса ДВП посредством обучения способствует повышению уровня BDNF. Когда ученые снизили уровень BDNF, уменьшилась и способность мозга к ДВП.

Использование нейронных связей укрепляет их, а бездействие ослабляет. Старые связи, не поддерживающиеся за счет взаимодействия, распадаются.

Точно так же, как мозгу требуется механизм ДВП, усиливающий нейронные связи, чтобы сохранить способность помнить, ему нужен механизм, обеспечивающий забывание. Процесс, известный как долговременное ослабление, или долговременная депрессия (ДВД), помогает избавиться от вредных привычек. (Обратите внимание, что этот процесс никак не связан с эмоциональным состоянием под названием «депрессия».) Процесс ДВД способствует ослаблению нейронных связей, поддерживающих старые привычки. Ослабление старых нейронных связей обеспечивает большее количество доступных нейронов для формирования новых нейронных связей с помощью механизма ДВП.

Чтобы понять этот принцип, задумайтесь о том, что наличие у человека акцента зависит от возраста, в котором он учит язык. Если учить язык в возрасте 20–30 лет, скорее всего, у человека будет проявляться акцент, обусловленный влиянием родного языка. Если же учить иностранный язык в возрасте до 10 лет, то акцента может не быть совсем. При изучении иностранного языка во взрослом возрасте в мозге продолжают активироваться те же самые нейронные связи, которые сформировались для произношения определенных звуков, даже когда человек старается произносить другие, хотя и похожие звуки.

Чем больше человек общается с теми, у кого нет акцента, тем выше вероятность, что он также избавится от неправильного произношения. Например, мои родители выросли недалеко от Бостона. Через несколько лет после моего рождения семья переехала на запад. Постепенно у моих родителей пропал бостонский акцент – по мере того, как они общались с людьми, переехавшими на запад из разных уголков страны, или с теми, кто там вырос.

Изменения в мозге происходят гораздо быстрее, когда вы генерируете новые идеи, чем когда учите иностранный язык или стараетесь избавиться от акцента. Определенные участки мозга способны быстро обрабатывать и анализировать информацию, чтобы принятие решений не растянулось на часы или даже дни.

Открытие веретенообразных клеток (или веретенообразных нейронов) привлекло внимание к способности людей быстро принимать эффективные решения. Веретенообразные нейроны обнаруживаются в большом количестве в передней поясной коре мозга. Эти нейроны позволяют быстро передавать разноплановую информацию; подобного процесса не наблюдается ни у одного другого вида. Веретенообразные клетки обеспечивают уникальный интерфейс между мыслями и эмоциями. Они поддерживают способность человека длительное время сохранять концентрацию внимания и самоконтроль. Они обеспечивают гибкость принятия быстрых, но взвешенных решений в сложных эмоциональных ситуациях.

Однако функции веретенообразных клеток реализуются лишь при наличии определенной основы, которую необходимо создавать, постоянно получая новые знания и развивая новые навыки и способности. Принятие быстрых интуитивных решений возможно на основе интеграции информации из уже сформировавшихся нейронных сетей.

 

Быстрые решения

 

Веретенообразные клетки относятся к особому классу нейронов, отличающихся очень высокой скоростью передачи информации. В мозге человека этих клеток больше, чем у любых других биологических видов. Например, у человека их в тысячу раз больше, чем у его ближайших родственников – приматов. Многие исследователи считают это одной из причин способности человека принимать быстрые решения. Свое название клетки получили из-за веретенообразной формы, постепенно сужающейся на одном конце. Они почти в четыре раза больше остальных нейронов, и считается, что способность к высокой скорости передачи информации обеспечивается именно их крупным размером.

Местоположение веретенообразных нейронов и их взаимосвязь с областями социального мозга свидетельствуют об их важности для социальных отношений и контроля эмоций. Веретенообразные нейроны обладают синаптическими рецепторами дофамина, серотонина, вазопрессина, которые определяют эмоциональное состояние человека и его привязанности. Веретенообразные нейроны формируют связи между передней поясной корой и ОФК.

В передней части передней поясной коры содержится большое число веретенообразных нейронов, обеспечивающих связь между различными областями мозга и участвующих в формировании привязанностей и процессе социальной коммуникации.

Представим, что вы направляетесь в Новый Орлеан, чтобы провести там отпуск, и вдруг слышите по радио, что на город надвигается ураган «Катрина». Ваши веретенообразные нейроны тут же обрабатывают информацию, вы меняете маршрут и едете в Хьюстон. Когда добираетесь до города, вы узнаете, что несколько сотен человек, эвакуированных из-за урагана, были размещены на стадионе «Астродом». Вы решаете отложить отдых и поработать там волонтером на раздаче пищи. Это все – быстрые решения, принятые в сложной эмоциональной ситуации. Через несколько лет вы можете вспоминать об этом отпуске как об одном из наиболее значительных в вашей жизни.

Каждый раз, когда вы вспоминаете эту историю, какие-то синаптические связи укрепляются, а какие-то ослабевают – в зависимости от деталей, которые приходят на ум. Когда вы рассказываете о событиях, из-за которых оказались в Хьюстоне, история меняется, это же происходит и с мозгом. Ваши друзья могут начать обсуждать недостаточную реакцию властей, и эти сведения приведут к формированию других синаптических связей. Фактически вы перенастраиваете мозг каждый раз, когда прокручиваете историю в голове.

В структуре мозга есть две области, отвечающие за механизм памяти. Одна из них – миндалевидное тело, имеющее форму миндалины. Миндалевидное тело участвует в формировании эмоций, в том числе таких сильных, как страх, и придает эмоциональную окраску входящей информации. Активизирование миндалевидного тела может вызвать быстрый взгляд привлекательного человека или суровая критика начальника. Зачастую оно выступает как своеобразная «тревожная кнопка».

Вторая область мозга, участвующая в механизме памяти, называется гиппокамп. Термин древнегреческого происхождения, в переводе означающий «морской конек». Нетрудно догадаться, что такое название эта область мозга получила из-за сходства с формой морского конька. Недавние исследования показали, что в гиппокампе происходит процесс формирования новых нейронов – нейрогенез. Ранее нейрогенез считался невозможным. Открытие новых нейронов в той области мозга, где происходит накопление последней информации, подчеркивает важность тренировки работы памяти для перенастройки мозга.

Гиппокамп и миндалевидное тело отвечают за два разных вида памяти – эксплицитную и имплицитную соответственно. Вы обращаетесь к эксплицитной памяти, когда пытаетесь вспомнить, что у вас было на ужин вчера, на какой день вы записались к стоматологу или как зовут девушку, стоящую рядом с кулером, так как ее лицо вам знакомо. Это факты, даты, фразы – самая разная информация. Люди чаще всего жалуются, что забывают именно ее.

Имплицитную память еще называют бессознательной памятью. Она связана с эмоциональной интенсивностью событий и ситуаций. Когда ситуация становится потенциально опасной, она активизирует систему страха в организме. Этот тип реакции часто называют «бей или беги».

Активизация системы тревоги происходит автоматически, то есть еще до того, как человек успевает что-то обдумать. Тысячи лет назад, когда нашим предкам доводилось встречаться со львом, самым лучшим вариантом было действовать без промедления, а не стоять и рассматривать льва, восхищаясь его красотой и гадая, почему лев заинтересовался людьми вместо того, чтобы преследовать какую-нибудь вкусную антилопу. Таким образом, короткий путь к миндалевидному телу спасал жизнь нашим предкам.

Баланс между симпатической нервной системой (отвечающей за процесс нервного возбуждения) и парасимпатической нервной системой (отвечающей за процесс нервного торможения) обеспечивает гибкость реакции. Подробнее я остановлюсь на этом в главе 9. Функции этих систем вместе с циркадными ритмами, системой питания, физическими упражнениями, техниками релаксации и медитации помогают обрести спокойствие и позитивный настрой.

Давайте немного изменим историю с ураганом «Катрина» и предположим, что вы не поехали в Хьюстон. Вы настолько испугались, что рванули на север, как можно дальше от разгулявшейся стихии. В какой-то момент вы съехали на обочину, потому что дороги совсем не было видно. На машину упала ветка дерева, что заставило вас волноваться еще сильнее. Несколько месяцев спустя во время сильного дождя вы ощущаете прилив беспокойства. Вы не отдаете себе отчета в том, что вызвало это чувство, но ваше миндалевидное тело помнит очень хорошо: оно активизирует гиппокамп и кору мозга, чтобы напомнить о том дне, когда вам удалось избежать урагана «Катрина».

Миндалевидное тело помогло вам, вызвав страх, заставивший съехать на обочину. Но из-за него теперь вы слишком остро реагируете на любой ливень. Проблема в том, что система активизируется даже в тех ситуациях, когда опасности нет. Иногда было бы лучше, если бы эта система не реагировала. Из главы 2 вы узнаете, как управлять миндалевидным телом, чтобы не впадать в состояние ненужного нервного возбуждения, когда требуется сохранять спокойствие.

Лобные доли коры головного мозга иногда также называют «исполнительным мозгом» или «центром управления и контроля», так как они играют важную роль в управлении ресурсами других областей мозга. Именно здесь принимаются решения, что делать, как не потерять позитивный настрой, как увидеть ситуацию в перспективе. Сохраняя активность и нацеленность на позитив, вы перенастраиваете лобные доли.

ОФК и нейроны других областей мозга, отвечая за социальное взаимодействие, образуют так называемый социальный мозг. При эффективной активизации этих нейронов человек испытывает меньше психологических проблем и обладает хорошим душевным здоровьем. В главе 7 рассказывается о многих преимуществах, которые обеспечивают сети социального мозга.

Привязанность, сформировавшаяся между вами и родителями в самом начале жизни, оказала влияние на ваш социальный мозг. Более поздние взаимоотношения меняли сложившиеся нейронные связи. Позитивные отношения стимулировали ощущение благополучия, а негативные вызывали противоположные чувства.

Известно, что при родах и формировании привязанности между ребенком и родителями происходит активная выработка гормона окситоцина. В дальнейшей жизни он вырабатывается в процессе установления близких отношений. Высокий уровень окситоцина помогает притупить боль, позволяет испытывать чувство спокойствия и удовлетворения рядом с другими людьми. По этим причинам окситоцин еще называют «гормоном объятий».

Недавнее открытие зеркальных нейронов показало, что определенные области мозга отличаются высокой степенью восприимчивости к поведению и намерениям других людей. Зеркальные нейроны помогают почувствовать то, что чувствует другой человек, даже не думая об этом целенаправленно. Например, вы обращали внимание, что, когда ваш сосед зевает, вы тоже начинаете зевать вслед за ним? Зеркальные нейроны служат нейрофизическим обоснованием эмпатии.

В истории, когда вы помогали в Хьюстоне пострадавшим от урагана «Катрина», именно зеркальные нейроны заставили вас сопереживать им.

Зеркальные нейроны обеспечивают способность выстраивать взаимоотношения и получать от них удовольствие. У людей с расстройствами аутического спектра меньше зеркальных нейронов или их функции нарушены. Недавно была выдвинута теория, что система зеркальных нейронов активно участвует во взаимоотношениях человека с собственным «я», а не только с окружающими людьми. Например, когда вы работали добровольцем на раздаче пищи на стадионе «Астродом», вам было приятно, если другие благодарили вас за работу.

Некоторые исследователи полагают, что ощущение чувства эмпатии и сопереживания посредством системы зеркальных нейронов сопоставимо с ощущением сопереживания самому себе. Таким образом, старая истина «Отдавая, ты получаешь» имеет нейрофизиологическое подтверждение. Бесчувственность и эгоизм отрицательно сказываются на мозге и психологическом состоянии. И наоборот, сопереживание и теплые отношения идут на пользу мозгу и душевному здоровью. Система зеркальных нейронов также считается областью мозга, участвующей в осознанной медитации и молитве. Спокойствие и концентрация, которые дают практика медитации или молитва, перенастраивают связи мозга, отвечающие за здоровье.

В последнее время многие нейрофизиологи занимаются изучением влияния медитации и молитвы на структуру и функции мозга. Как оказалось, тибетские монахи способны перенастраивать мозг в результате многолетних духовных практик. Специалисты изучили деятельность мозга монахов во время определенных видов медитации при помощи функциональной магнитно-резонансной томографии (фМРТ), позитронно-эмиссионной томографии (ПЭТ), а также других методов. Благодаря этим исследованиям мы имеем представление о том, что происходит в мозге во время медитации. Известно, что благодаря практике осознанности можно оказывать влияние на состояние здоровья и общее благосостояние. Вы тоже в силах перенастроить мозг посредством практики осознанности. Из главы 9 узнаете подробнее, как это сделать.

 

КУРС для мозга

 

Теперь, когда вы имеете представление о механизме работы мозга, давайте сосредоточимся на методе перенастройки мозга, включающем следующие шаги:

• концентрацию;

• усилие;

• расслабленность;

• стремление.

 

Чтобы вам было легче запомнить эти шаги, используйте акроним КУРС – именно этим курсом вам стоит следовать для перенастройки мозга. Остановимся на каждом из шагов подробнее.

 

Концентрация

 

Необходимо концентрировать внимание на ситуации, новом образе действий или информации, если вы хотите повторить или запомнить их. Усилие по концентрации активизирует лобные доли, а это обеспечивает вовлеченность в процесс и других областей мозга. Воспринимайте данный шаг как функцию оповещения. Без концентрации невозможно перенастроить мозг, с нее все начинается.

Концентрация и лобные доли играют важную роль в процессе нейропластичности мозга. Представьте себе префронтальную кору в роли управляющего центра мозга: именно здесь происходит направление ресурсов на то, что важно. Когда вы действуете автоматически, например управляете автомобилем и одновременно беседуете с другом, сидящим рядом на пассажирском сиденье, ваше внимание направлено на разговор. Вы запомните разговор, а не деревья и дома, мимо которых проезжали. Однако если вы будете обсуждать то, что видите по пути, фокус внимания сдвинется и вы запомните детали путешествия. Если потом вы станете обсуждать с кем-то эти детали, ваши воспоминания усилятся. Если не будете впоследствии обсуждать эти детали, то есть не будете концентрировать на них внимание, вероятнее всего, вы скоро о них забудете.

Таким образом, одна лишь концентрация не обеспечивает перенастройки мозга. Вы обращаете внимание на тысячи мелочей в течение дня, и мозг не в состоянии запомнить все, что с вами происходило. Концентрация позволяет обратить внимание на то, что происходит здесь и сейчас. С этого начинается процесс нейропластичности мозга.

 

Усилие

 

Усилие сдвигает фокус внимания с восприятия на действие. Осознанное усилие активизирует формирование новых синаптических связей в мозге. Когда вы начинаете совершать усилие, мозг использует большое количество глюкозы, чтобы воспринять новую информацию. За последние два десятилетия, изучая результаты позитронно-эмиссионной томографии, нейрофизиологи собрали большой объем данных о том, какие области мозга активизируются в результате метаболизма глюкозы, когда человек думает о чем-то или испытывает эмоции. Когда вы только начинаете предпринимать попытку произвести действие, область мозга, отвечающая за выполнение этой задачи, уже высвечивается на мониторе как активная.

 

Расслабленность

 

После того как новый образ действий, мысли или эмоции становятся вам знакомы, на их поддержание уходит меньше энергии. Это похоже на освоение новой подачи в теннисе или запоминание приветствия на иностранном языке. На первых порах требуется больше концентрации, усилий и энергии, но после того, как вы несколько раз попробуете выполнить новый прием или поздороваться на неродном языке, с каждым разом это будет даваться все легче. Таким образом, для перенастройки мозга необходимо какое-то время практиковать новый образ действий, чтобы он перешел в разряд автоматических. Со временем все будет получаться без особых усилий. Когда вы достигнете этого уровня, мозгу не придется трудиться так же усердно, как раньше.

Мозг человека и его тело подчиняются законам природы, а один из основных законов природы – закон сохранения энергии, то есть та самая расслабленность. Это значит: то, что происходит в природе, обычно происходит просто. Например, все реки текут по направлению к подножию холма, а не наоборот. Чем глубже ручей, тем больше в нем воды. Это же верно и относительно мозга человека: чем чаще вы пользуетесь определенными нейронными связями, тем чаще будете пользоваться ими в будущем. Как показывают результаты позитронно-эмиссионной томографии, когда у человека хорошо развивается определенный навык, область мозга, отвечающая за этот навык, «трудится» меньше. Это подтверждает фундаментальный принцип эффективности: то, что получается легко, будет повторяться, потому что это легко.

Когда образец поведения сформирован, будь то подача в теннисе или приветствие на французском языке с правильным произношением, повторить его в следующий раз будет уже легче. Но что, если прекратить делать это? Если десять лет не брать в руки теннисную ракетку, то с первого раза хорошая подача вряд ли получится. Если вы отправитесь во Францию через десять лет после того, как учили французский, ваша речь не окажется такой же беглой, как была на занятиях (если, конечно, вы не практиковались все это время). Для поддержания какой-то способности требуется периодическое повторение соответствующих действий. Несомненно, вы будете играть в теннис лучше человека, никогда не делавшего это раньше, и навык разговорного французского вернется к вам быстрее, но, если вы практикуете эти вещи постоянно, мозг сохранит то состояние, когда эти действия не требуют от вас никаких усилий.

 

Стремление

 

Заключительный этап в процессе перенастройки мозга – постоянная практика. Повторяйте ее снова и снова. При этом процесс необязательно должен быть скучным и напряженным. Если вы уже сделали три первых шага по перенастройке мозга, то на последнем этапе у вас все должно получиться просто, ведь вы уже вышли на уровень сохранения энергии. Поэтому стремление означает лишь то, что вы продолжаете активно заниматься тем, что делали. Сохраняя приверженность выбранному курсу, вы завершаете КУРС по перенастройке мозга.

Теперь, когда вы познакомились с четырьмя основными шагами, посмотрим, как их применять в повседневной жизни. Из главы 2 вы узнаете, как бороться с беспокойством, напрасной тревожностью или страхом, а глава 3 поможет вам избежать негативных эмоций и депрессии.

Следующая история служит наглядным примером того, что процесс перенастройки мозга требует активной и осознанной позиции. Речь идет не о том, чтобы просто научиться новому фокусу, для этого необходимо пройти все этапы, которые мы назвали КУРСом по перенастройке мозга.

 

 


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.052 с.