Первый закон термодинамики – взаимные энергопревращения в термодинамических системах. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Первый закон термодинамики – взаимные энергопревращения в термодинамических системах.

2021-03-18 69
Первый закон термодинамики – взаимные энергопревращения в термодинамических системах. 0.00 из 5.00 0 оценок
Заказать работу

Количество воздействия.

 Воздействием внешней среды на термодинамическую систему мы назвали акт обмена энергией между двумя объектами. Поэтому естественной мерой воздействия является количество энергии, которой обменивается система с внешней средой. Формальную запись количества воздействия термодинамика позаимствовала у теоретической механики. В аппарате последней, как и в теории поля, термин потенциал относится к энергии рабочего тела, а не к его параметру.

Элементарным количеством воздействия данного рода называется произведение потенциала на приращение сопряженной координаты.

│dKd│ = pdv, дж/кг, │dKT│ = Tds, дж/кг,               (1.7)

где К – количество воздействия, индексы «d» и «Т» - соответственно деформационное и термическое воздействие, │ │- символика абсолютного значения величины.

Здесь уместно отметить об отличии направления действия сил и потенциалов. В теоретической механике, которая возникла исторически ранее термодинамики, знак «+» был принят для работы расширения системы (dv > 0). В термодинамике для потока теплоты q от системы во внешнюю среду принимается знак «-«(ds < 0). Соответственно, если теплота подводится к системе из внешней среды, то ее знак принимается «+» и ds > 0.

Это же правило устанавливается строго термодинамически. Для записи в одном уравнении количеств воздействия Кd и КТ обмена системы с окружающей средой следует лишь вспомнить качественную связь между направлением действия движущей силы и изменением координаты. Действительно, при силовых взаимодействиях Xe > X (dX > 0) координата убывает (dx < 0), т.е. dK < 0 (знак минус). При потенциальных взаимодействиях для Ре > Р (dP > 0) координата возрастает и количество внешнего воздействия должно входить в уравнение со знаком «+». Иными словами, формально потенциал это минус сила.

 

Внутренняя энергия.

Внутренней энергией термодинамической системы называется сумма всех видов энергии в системе.

В школьном курсе физики различают два вида энергии: кинетическая и потенциальная. Под кинетической энергией понимают энергию движения конечного количества массы макротела в геометрическом пространстве. При этом различают движение поступательное, как движение центра масс, движение вращательное вокруг какой-то оси и движение колебательное, как перемещение частей массы относительно друг друга.

Разумеется, внутренняя энергия возрастает или убывает за счет потоков через границу рабочего тела (за счет количеств внешних воздействий между системой и внешней средой). Именно подобные энергетические преобразования по существу между каким-то внешним телом и рабочим телом увеличивают или уменьшают внутреннюю энергию. В самом веществе рабочего тела происходят структурно-энергетические преобразования. Последние адекватны роду (виду) взаимодействия. Если это электрические импульсы (за счет разности электрических потенциалов ΔV), то в системе происходит движение зарядов. Если воздействие на рабочее тело тепловое, то интенсифицируется движение молекул (растет их кинетическая энергия) и т.д.

Однако, термодинамика не занимается таким детальным рассмотрением роли и влияния на вещество видов энергии – это задача физики и физической химии.

Обозначение внутренней энергии в термодинамике – U дж или u = U/m дж/кг.

 

Первый закон термодинамики.

На специфическом языке термодинамики это просто закон сохранения энергии в замкнутой системе: изменение внутренней энергии термодинамической системы равно сумме количеств внешних воздействий.

Аналитическая запись закона (основное уравнение термодинамики:

dU = ∑ δKi или dU = δQ – δW = T dS – p dV.         (1.8)    

для термодеформационной системы. В (1.8) приращение внутренней энергии dU записано через параметры состояния р,V,Т,S, т.е. через потенциалы и координаты двух видов взаимодействия. В интенсивной форме запись первого закона термодинамики имеет вид:

dq ≡ T ds, dw ≡ p dv и тогда du = dq – dw = Tds - pdv. (1.9)

Здесь dq = Tds – элементарное количество теплоты, подведенное (отведенное) к системе, т.е. это элементарное количество термического воздействия, dw = pdv – элементарное количество работы деформации (механической работы), т.е. элементарное количество деформационного воздействия.

Замечание. В уравнении первого закона (основного закона термодинамики) в правой части входят внешние воздействия, т.е. при потенциальных воздействиях Pedxe и силовых Xedxe, т.е.

dU = ∑Pedxe - ∑Xedxe                  (1.9.1)

Если изучаются равновесные (квазистационарные) процессы, в которых нет отличия по величине сил (Х) и потенциалов в системе (Р) и окружающей среде (Ре), т.е. между ними бесконечно малая разница по величине, то все переменные основного уравнения термодинамики – функция U и аргументы P,X,x относятся к исследуемому рабочему телу. Действительно, из (1.9.1) при Pe – P = ΔP и Xe – X = ΔX получим

dU = ∑(P +ΔP)dx - ∑(X + ΔX)dx,

и при ΔР → о(ΔР) и ΔХ → о(ΔХ) окончательно с учетом равенства │dxe│ = │dx│получаем (1.8) и (1.9).

Окончательно, основное уравнение технической термодинамики, изучающей квазистатические (равновесные) процессы имеет вид:

du = Tds – pdv.               (1.9.2.)

 

Подведемпредварительные итоги. Выше представлены основные определения понятий термодинамики, их необходимо запомнить, чтобы говорить на языке термодинамики. Взаимосвязь понятий иллюстрирует схема на рис 1.

 

 

 

 


Рис. 1.

Схема последовательности ввода и взаимосвязей

понятий в термодинамике.

Уравнения состояния.

Уравнением состояния рабочего тела называется функциональная зависимость потенциала от всех координат состояния.

Следовательно, сколько родов взаимодействия термодинамической системы с внешней средой, столько потенциалов, столько координат состояния и столько уравнений состояния.

Для термодеформационной системы (т.е. для двух родов взаимодействия: термического и деформационного) уравнений состояния два, т.к. два потенциала в соответствии с (1.9.2):

p = f(s,v), T = φ(s,v).            (1.10)

Конкретный вид функций f(s,v) и φ(s,v) предоставляют для термодинамики физики, которые для этого проводят специальные теоретические и экспериментальные исследования. Полученные соотношения параметров состояния системы четко отражают физические связи внутри рабочего тела (системы) – первичными сигналами изменения состояния являются координаты. Сами соотношения относятся к уравнениям состояния – это общий вид такого уравнения в термодинамике.

В силу исторических обстоятельств развития физики и термодинамики уравнение состояния идеального газа не содержит энтропию:

pv = RT (уравнение Клайперона – Менделеева),             (1.11)

где R = 8314/μ. Здесь 8314 дж/кмольК – универсальная газовая постоянная, μ – молекулярный вес вещества рабочего тела, кг/кмоль. Это уравнение было получено из опытов с газами при невысоких давлениях и температурах. Разумеется, из (1.10) обе аналитические связи можно свести к одной F(p,v,T) = 0, которая не противоречит экспериментальному (1.11). Этим не исчерпывается роль термодинамики в решении проблемы уравнений состояния. Она накладывает существенные ограничения на функциональный вид этих функций. Эти функции могут быть не любыми, а обязательно удовлетворять условиям:

(∂f/∂v)s ≡ (∂(-p)/∂v)s ≥ 0 и (∂φ/∂s)v ≡ (∂T/∂s)v ≥ 0 (1.12)

В этой записи, а мы будем ею широко пользоваться в дальнейшем, индекс внизу справа у скобки с частной производной означает, что соответствующий параметр состояния фиксирован.

Эти неравенства обычно называют критерием стабильности термодинамики, в химии – это формальная запись принципа ле Шателье – Брауна, хорошо знакомого студентам химико-технологического профиля образования.

Происхождение критерия стабильности термодинамики – эмпирический факт. Многочисленные наблюдения за различными термодинамическими системами показывают, что с ростом координаты состояния какого-то рода взаимодействия (и отсутствия других видов) соответствующий потенциал самопроизвольно не убывает (т.е. растет или неизменен). Обратно, с увеличением потенциала сопряженная координата состояния самопроизвольно также не убывает (т.е. растет или неизменна)

Для теплоизолированной системы (s = const) c увеличением удельного объема, согласно критерию стабильности, давление в системе только уменьшается, но это и очевидно. Для деформационно изолированной системы (v = const) с увеличением энтропии температура газа обязательно увеличится, и обратно, с увеличением температуры энтропия только увеличится. Действительно, если закрытый газовый баллон с каким-то газом положить в костер, то температура газа обязательно увеличится в согласии с критерием стабильности. Вот такие и многие другие экспериментальные факты термодинамика «присвоила» себе.

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.