Основные этапы нейросетевого анализа. Классификация известных нейросетевых структур по типу связей и типу обучения и их применение. — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Основные этапы нейросетевого анализа. Классификация известных нейросетевых структур по типу связей и типу обучения и их применение.

2021-03-18 51
Основные этапы нейросетевого анализа. Классификация известных нейросетевых структур по типу связей и типу обучения и их применение. 0.00 из 5.00 0 оценок
Заказать работу

Этап 1: выбор типа архитектектуры нейронной сети a) Выбор типа нейрона со своей активационной формой b) Выбор количества входов/выходов, что четко связано с постановкой задачи. c) Выбор количества слоев и нейронов в каждом слое

В рамках известных архитектур может решаться вопрос о варьировании количества слоев и нейронов в каждом слое. Этот вопрос уточняется на этапе обучения нейросети.

Этап 2: подготовка данных a) Кодирование входов/выходов b) Нормировка данных c) Обеспечение независимости между входами нейросети

Этап 3: процесс обучения нейросети.

Этап 4: выбор нейросети, которая наилучшим образом подходит по результатам обучения для решения задачи.

Этап 5: оценка значимости ошибки, которую дает нейронная сеть для решения поставленной задачи.

Типовые структуры и решаемые задачи

  Обучение «с учителем» Обучение «без учителя»
Без обратной связи Многослойный Персептрон (классификация, аппроксимация) Карты Кохонэна, соревнова-тельные сети (кластеризация, сжатие данных)
С обратной связью Рекуррентные аппроксима-торы (предсказание временных рядов) Сети Хольфильда (кластеризация, оптимизация, ассоциативная память)

 

Обучение искусственных нейронных сетей

Среди всех интересных свойств искусственных нейронных сетей ни одно не захватывает так воображения, как их способность к обучению. Их обучение до такой степени напоминает процесс интеллектуального развития человеческой личности, что может показаться, будто нами достигнуто глубокое понимание этого процесса. Но, проявляя осторожность, следует сдерживать эйфорию. Возможности обучения искусственных нейронных сетей ограничены, и нужно решить много сложных задач, чтобы определить, находимся ли мы на правильном пути.

Цель обучения

Сеть обучается, чтобы для некоторого множества входов давать желаемое (или, по крайней мере, сообразное с ним) множество выходов. Каждое такое входное (или выходное) множество рассматривается как вектор. Обучение осуществляется путем последовательного предъявления входных векторов с одновременной подстройкой весов в соответствии с определенной процедурой. В процессе обучения веса сети постепенно становятся такими, чтобы каждый входной вектор вырабатывал выходной вектор.

Обучение с учителем

Различают алгоритмы обучения с учителем и без учителя. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором, разность (ошибка) с помощью обратной связи подается в сеть, и веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, ошибки вычисляются и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемо низкого уровня.

Обучение без учителя

Несмотря на многочисленные прикладные достижения, обучение с учителем критиковалось за свою биологическую неправдоподобность. Трудно вообразить обучающий механизм в мозге, который бы сравнивал желаемые и действительные значения выходов, выполняя коррекцию с помощью обратной связи. Обучение без учителя является намного более правдоподобной моделью обучения для биологической системы. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы. Предъявление на вход вектора из данного класса даст определенный выходной вектор, но до обучения невозможно предсказать, какой выход будет производиться данным классом входных векторов. Следовательно, выходы подобной сети должны трансформироваться в некоторую понятную форму, обусловленную процессом обучения. Это не является серьезной проблемой. Обычно не сложно идентифицировать связь между входом и выходом, установленную сетью.

Алгоритмы обучения

Большинство современных алгоритмов обучения выросло из концепций Д.О. Хэбба. Он предложил модель обучения без учителя, в которой синаптическая сила (вес) возрастает, если активированы оба нейрона, источник и приемник. Таким образом, часто используемые пути в сети усиливаются и феномены привычки и обучения через повторение получают объяснение.

В искусственной нейронной сети, использующей обучение по Хэббу, наращивание весов определяется произведением уровней возбуждения передающего и принимающего нейронов. Это можно записать как

где — значение веса от нейрона к нейрону до подстройки, — значение веса от нейрона к нейрону после подстройки, — коэффициент скорости обучения, — выход нейрона и вход нейрона , — выход нейрона .

Сети, использующие обучение по Хэббу, конструктивно развивались, однако за последние 20 лет появились и разрабатывались более эффективные алгоритмы обучения. В частности, были развиты алгоритмы обучения с учителем, приводящие к сетям с более широким диапазоном характеристик обучающих входных образов и большими скоростями обучения, чем использующие простое обучение по Хэббу.

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.