Путешествие в необычные глубины — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Путешествие в необычные глубины

2021-01-31 70
Путешествие в необычные глубины 0.00 из 5.00 0 оценок
Заказать работу

 

 

 

В нашем путешествии к истокам реки времени мы столкнемся с фактом, что чем ближе к сингулярности, тем выше температура Вселенной, а следовательно, больше энергия частиц материи. Какие процессы мы должны ожидать здесь, в мире гигантских энергий? Для того чтобы разобраться в этом, оставим на время космологию и отправимся в область бесконечно малого – в мир современной физики элементарных частиц.

Это наше путешествие будет очень кратким, и мы познакомимся в основном лишь с фактами, особенно важными для понимания процессов в ранней Все· ленной.

В физике элементарных частиц за последние два десятка лет произошел настоящий переворот. Стало ясно, что элементарные частицы, из которых состоит вещество, например такие, как протон и нейтрон, это вовсе не «кирпичики мироздания», а сложные системы, состоящие из еще более элементарных объектов – кварков. Было установлено существование целых классов новых частиц с совершенно необычными свойствами. Но, пожалуй, самое важное – это установление замечательного единства различных сил природы, которые еще недавно считались совсем несхожими по своей сути. Такое единство проявляется при очень больших энергиях и поэтому особенно важно для понимания начала расширения Вселенной.

Физика не впервые сталкивается с ситуацией, когда силы, совсем непохожие друг на друга, оказывались различными проявлениями более общей сущности. Такое случилось с электрическими и магнитными взаимодействиями. Люди были знакомы с проявлениями этих сил с незапамятных времен и думали, что магниты никак не воздействуют на электрические заряды и наоборот. Однако опытами А. Ампера, М. Фарадея и других было установлено, что движущиеся заряды создают магнитное поле, а движение магнита ведет к появлению электрических сил. Электромагнитная теория Дж. Максвелла через полвека объединила эти на первый взгляд разные взаимодействия в единую сущность – в электромагнитное поле. Таким образом, оказалось, что электромагнетизм един, и только в специальных условиях, когда нет движения, нет изменения полей во времени, он распадается на электричество и магнетизм.

А. Эйнштейн вскоре после создания общей теории относительности начал титаническую работу, пытаясь объединить электромагнетизм и гравитацию – те два вида взаимодействий, которые тогда были известны. Эти попытки он продолжал всю жизнь. Однако в то время наука не была еще готова не только для успешного выполнения этой задачи, но даже для осмысления грандиозности и значимости этих попыток. Очень многие физики относились к попыткам А. Эйнштейна весьма скептически. Так, знаменитый физик В. Паули образно говорил по этому поводу: «Что разделено богом, человеку не соединить». Когда же позднее начались попытки объединения других сил природы, то они часто встречали такой же скептицизм.

Весной 1988 года в Триесте я спросил знаменитого пакистанского физика, директора Международного исследовательского центра А. Салама о первых попытках создания теорий, объединяющих различные силы. Он ответил, что лет тридцать назад в это почти никто не верил, и посоветовал прочитать письмо, которое ему написал В. Паули в 1957 году и которое А. Салам приводит в одной из своих статей. В этом письме говорится: «Не торопясь читаю Вашу статью. (Под ярким Солнцем на берегу Цюрихского озера.) Меня очень удивило ее название – «Универсальное взаимодействие Ферми»; это связано с тем, что с некоторых пор я придерживаюсь правила: если теоретик говорит «универсальный», то это означает чистую бессмыслицу».

С времен первых попыток А. Эйнштейна прошло много десятилетий, и ситуация в физике резко изменилась. В настоящее время известны четыре вида физических взаимодействий: гравитационные, слабые, электромагнитные и сильные.

До сих пор мы говорили главным образом о гравитационном взаимодействии, управляющем движением небесных тел, но в мире элементарных частиц им можно пренебречь. Несколько предварительных слов о трех других взаимодействиях.

Примером процесса, идущего за счет слабого взаимодействия, является распад свободного нейтрона n на протон р, электрон е и антинейтрино νe. Мы видим существенное отличие проявления этого взаимодействия от рассмотренных нами проявлений гравитационного взаимодействия. Гравитация в том понимании медленных движений, о котором мы говорили, меняет только состояние движения частиц, слабое же взаимодействие меняет внутреннюю природу частиц: вместо нейтрона появляются протон, электрон и антинейтрино.

Сильные взаимодействия обусловливают различные ядерные реакции (такие, например, как термоядерные реакции), а также возникновение сил, связывающих нейтроны и протоны в ядра.

С электрическими и магнитными силами мы знакомы по школьным опытам, а поэтому они не нуждаются в комментариях.

Частицы, из которых состоит материя, делятся на группы в зависимости от свойств их взаимодействия.

Частицы, не участвующие в сильных взаимодействиях, называют лептонами. Таких частиц шесть. Это электрон e, мюон μ, тау‑лептон τ и три сорта нейтрино: электронное νe мюонное νμ и тау‑нейтрино ντ. (Тау‑нейтрино пока не открыто. Однако, по‑видимому, никто не сомневается в его существовании. Мы в дальнейшем не будем делать оговорок об отдельной неполноте наших знаний.)

Лептоны группируются в пары: электрон с электронным нейтрино, мюон – с мюонным, тау‑лептон – с тау‑нейтрино. Это объединение обусловлено тем, что каждый сорт нейтрино участвует в реакциях вместе со своим партнером по паре. Первые три частицы имеют электрический заряд, равный заряду электрона. Все сорта нейтрино электронейтральны.

Остальные фундаментальные частицы носят название кварков; они участвуют в сильных взаимодействиях (а также и в слабых, и в электромагнитных). Из кварков слагаются частицы, участвующие в сильных взаимодействиях, и называются адронами. Примерами адронов являются протон, нейтрон, пи‑мезон. Всего кварков шесть, они обозначаются латинскими буквами и также группируются в три семейства, соответствующие семействам лептонов: (u, d), (с, s), (t, b).

Кварки имеют довольно экзотические свойства. Если выражать их электрический заряд в единицах заряда электрона, то оказывается, что заряды кварков дробные. Первые частицы в каждой паре имеют заряд +2/3. Остальные ― ‑1/3. Каждой частице соответствует античастица. Для электрически заряженных частиц заряд античастиц противоположен. Например, электрону е с отрицательным зарядом соответствует античастица позитрон е+ с положительным зарядом, кварку u с зарядом +2/3 соответствует антикварк ū с зарядом ‑2/3 и т. д. (Античастицу обычно обозначают черточкой над буквой.)

Все перечисленные выше фундаментальные частицы, из которых состоит физическая материя, обладают еще одним важным свойством. Им присуще собственное вращение – внутренний момент импульса, или, как его называют в квантовой механике, спин. Причем спин этих частиц, измеренный в единицах планковской постоянной ħ, равен 1/2.

Еще несколько слов о кварках. Как уже было сказано, кварки являются составляющими частями сильно‑взаимодействующих частиц – адронов. Адроны, в свою очередь, подразделяются на барионы, у которых полуцелые спины и мезоны с целыми спинами. Каждый барион состоит из трех кварков, а мезон – из кварка и антикварка. При таких объединениях заряд составной частицы обязательно оказывается целым. Например, состав протона – uud, нейтрона – ddu, состав π+ ‑мезона – ūd.

Замечательной особенностью кварков является то, что в сегодняшней Вселенной они существуют только в связанных состояниях – только в составе адронов. Одиночные, свободные кварки физиками не обнаружены, несмотря на многочисленные попытки это сделать. Почему кварк не может быть вырван из адрона или создан каким‑либо иным способом?

Это один из основных вопросов физики элементарных частиц, и мы к нему еще вернемся.

Перечисленные нами элементарные частицы физической материи имеют полуцелые спины, и их называют фермионами.

Обратимся к проблеме взаимодействия между частицами. Все процессы, которые происходят во Вселенной, есть результат этих взаимодействий. Но как же происходят взаимодействия, в чем их суть?

Частицы взаимодействуют путем обмена другими частицами – переносчиками взаимодействия. Каждый из перечисленных выше четырех видов взаимодействия имеет своих переносчиков.

Начнем с хорошо известного нам электромагнитного взаимодействия. Переносчиком его является фотон. На рис. 9 изображена схема электромагнитного взаимодействия между протоном и электроном. Протон испускает фотон, который поглощается электроном.

Читателю, конечно, известно, что наглядные представления для мира элементарных частиц невозможны, так как там действуют совершенно непривычные для нас законы квантовой механики. Невозможны, конечно, и наглядные картинки. Тем не менее подобные схемы, как выразился в популярной статье американский физик М. Гелл‑Манн, создают «иллюзию понимания» и до некоторой степени помогают, если не понять полностью, то по крайней мере создать образ того, что происходит. Надо сказать, что для специалистов подобные схемы служат и рабочим инструментом для расчетов взаимодействий. Они получили название диаграмм Фейнмана, по имени их изобретателя – известного американского физика.

В случае гравитационного взаимодействия переносчиками являются кванты поля тяготения – гравитоны. Мы пока не будем говорить об этом виде взаимодействия. И фотоны, и гравитоны не имеют массы (как говорят, массы покоя) и всегда движутся со скоростью света.

Слабые взаимодействия также имеют своих переносчиков. Это частицы, которые получили название векторных бозонов (мы не будем объяснять, почему их так называют). Их три (а не по одной частице, как было в случае электромагнитного и гравитационного взаимодействий): W±, Z0. Частицы W+ и W несут положительный и отрицательный заряды соответственно, a Z0 – частица электронейтральная. Пример слабого взаимодействия с участием W‑частицы показан на рис. 10. Эта схема изображает распад нейтрона.

Существенным отличием переносчиков слабого взаимодействия от фотона и гравитона является то, что они очень массивны. Примерно в сто раз тяжелее протона. С массивностью переносчиков связан тот факт, что слабое взаимодействие возможно только на очень коротких расстояниях. Это расстояние в тысячу раз меньше размера атомного ядра. Напомним, что ядро, в свою очередь, в сто тысяч раз меньше размера атома.

Почему слабое взаимодействие действует на столь коротких расстояниях? Дело заключается в следующем. Чтобы испустить тяжелую частицу‑переносчика, взаимодействующая частица должна затратить большую энергию. Но эту энергию неоткуда взять! Однако в мире элементарных частиц существует так называемое соотношение неопределенностей. Оно гласит, что при измерении продолжительностью не более чем Δt, нельзя измерить энергию с точностью лучше, чем частное от деления постоянной Планка ħ на Δt.

Это означает, что на короткий промежуток времени Δt у частицы или системы может появляться энергия как бы «ниоткуда», но эта «занятая» энергия должна быть такова, чтобы за время Δt ее нельзя было измерить и чтобы, таким образом, не вступить в противоречие с законом сохранения энергии.

Мы видим здесь, что в мире элементарных частиц время оказывается связано с энергией. Если энергия определена точно, то промежуток времени, соответствующий этому состоянию, велик и совершенно неопределен. И наоборот. Мы вновь встречаем явную связь времени и энергии, о которой говорилось в разделе «Энергия из черных дыр».

Напомним здесь еще об одном проявлении этой связи, которая давно была установлена физиками. Речь идет о законе сохранения энергии.

То, что энергия не может взяться «ниоткуда», было установлено после многочисленных, продолжающихся столетия, неудачных попыток построить вечный двигатель. Закон сохранения энергии был сформулирован в 1842 году немецким врачом Ю. Майером. Любопытно, что он пришел к этому выводу после плавания корабельным врачом на остров Яву. Наблюдения за венозной кровью матросов натолкнуло его на мысль, что механическая работа и теплота могут взаимопревращаться. В 1842 году он опубликовал работу «Замечания относительно сил неживой природы», в которой и сформулировал свой закон сохранения и превращения энергии. Через несколько лет этот закон был переоткрыт Дж. Джоулем и Г. Гельмгольцем. Работы Майера долго оставались непризнанными. Он пытался защитить свой приоритет. Это привело его к тяжелому нервному расстройству. В 1862 году Р. Клаузиус и Дж. Тиндаль обратили внимание на эти работы, и его приоритет был признан.

Закон сохранения энергии гласит, что энергия системы, которая изолирована и ни с чем не взаимодействует, не может измениться. Она сохраняется с течением времени.

Глубокая причина этого фундаментального свойства природы была вскрыта в 1918 году немецким математиком Эмми Нетер. Она показала, что энергия сохраняется потому, что время однородно. Все моменты времени равноправны согласно физике Ньютона. Вот по этой причине, как строго математически показала Э. Нетер, энергия во все моменты времени одинакова. Это был совсем новый подход к законам физики, основанный на свойствах, как говорят, симметрии времени. Оказалось также, что другие физические величины – импульс тела и момент импульса – сохраняются со временем также благодаря свойствам симметрии, на этот раз – симметрии пространства.

Так впервые были открыты глубинные связи физических свойств симметрии пространства и времени. Идеи симметрии, как мы увидим, являются руководящими в современной физике.

Вернемся теперь к нашим взаимодействующим частицам. Чем больше масса переносчика взаимодействия, тем больше его энергия. Из‑за соотношения неопределенностей следует, что чем больше энергия, тем должен быть меньше промежуток времени, прошедший между испусканием переносчика (при котором «занимается» энергия) и его поглощением (когда отдается «долг»). Так, в случае векторных бозонов в сто раз более тяжелых, чем протон, промежуток Δt оказывается одной сто миллионной, миллиардной миллиардной доли секунды! За это время частица‑переносчик, двигаясь даже со скоростью света, успеет пройти расстояние не больше, чем тысячная доля поперечника атомного ядра. Это и определяет радиус действия слабых ядерных сил.

Обратимся теперь к сильным взаимодействиям. Их переносчиками являются глюоны. Подобно фотону они не имеют массы покоя. В случае электромагнитного взаимодействия испускание и поглощение переносчиков связаны с наличием у частицы электрического заряда. В случае сильных взаимодействий испускание и поглощение глюонов также связаны с наличием у кварков особых зарядов. Однако эти заряды бывают трех различных видов и получили названия: красный, желтый и синий. Само сильное взаимодействие иногда называют цветной силой. Любой кварк может иметь один из трех «цветов». Разумеется, никакого отношения к обычному цвету эти условные названия не имеют.

Другим отличием сильных взаимодействий от электромагнетизма является то, что глюоны сами переносят цветовые заряды и являются, таким образом, цветозаряженными. Напомним, что фотон не несет электрического заряда. Пример сильного взаимодействия между кварками показан на рис. 11.

Все рассмотренные нами переносчики сил обладают общим свойством: они имеют целочисленный спин (напомним, что спины фундаментальных частиц полуцелые). У фотонов, W+‑, W‑, Z0‑бозонов и глюонов спин равен 1, у гравитонов – 2 (в единицах ħ). Частицы с целыми спинами называют бозонами.

На этом, казалось, можно было бы остановиться в нашем путешествии в микромир, в нашем знакомстве с мельчайшими, известными сегодня частицами материи. Но в действительности те достаточно надежно установленные факты, о которых мы рассказали, это только вступление к знакомству с поистине удивительным миром бесконечно малого.

Свойства этого мира тесно переплетены со свойствами бесконечно большой Вселенной. Приведенные краткие сведения могут рассматриваться лишь как своеобразная «верхушка айсберга», видимая нами сегодня при рассмотрении процессов, протекающих со сравнительно малыми энергиями. Подлинная суть явлений в микромире гораздо обширнее, она захватывающе интересна и важна для космологии. С некоторыми аспектами этой «подводной» части айсберга мы сейчас и познакомимся. Следует особо предупредить читателей, что специалистам далеко еще не все ясно в структуре «подводной части», и чем глубже мы будем проникать в суть явлений, тем более гипотетичными будут некоторые сведения. Тем не менее эти сведения с переднего края науки настолько важны, что мы считаем необходимым познакомить с ними читателя, имея в виду то, что основные контуры явлений очерчены здесь наукой, по‑видимому, правильно.

 

ВЕЛИКОЕ ОБЪЕДИНЕНИЕ

 

 

 

Когда мы говорили о вакууме – пустоте – в разделе «Энергия из черных дыр», то подчеркивали, что в нем непрерывно происходит рождение и уничтожение виртуальных частиц. Пустота оказалась совсем непростой. Вакуум – это сложнейшее состояние «кипящих» виртуальных частиц всевозможных сортов.

Читателя, наверное, теперь не слишком удивит тог факт, что свойства этого состояния – вакуума – зависят от того, как его приготовить. Следовательно, бывает разный вакуум – разная пустота!

Мы в дальнейшем приведем примеры возможных вакуумов. А сейчас поставим вопрос: не может ли результатом активности вакуума (результатом «кипения») явиться появление некоторой плотности энергии как следствие взаимодействия виртуальных частиц?

Оказывается, плотность энергии может появиться. Этот факт подчеркивался еще в 60‑е годы Я. Зельдовичем. Каждой энергии соответствует определенная масса. Поэтому вместе с плотностью энергии вакуума должна появиться и плотность массы. Но тогда вы, читатель, наверное, спросите: не означает ли это появление в наших представлениях некоторой универсальной среды, некоторого нового «эфира»? Если это так, то эта среда должна восстановить понятие абсолютного покоя и движения. Ведь движение относительно этой среды и было бы движением относительно пустоты, то есть относительно абсолютного пространства.

Казалось бы, двигаясь относительно такого нового «эфира», мы должны почувствовать набегающий на нас поток – «эфирный ветер». Его‑то и хотел обнаружить Майкельсон еще в прошлом веке, пытаясь измерить движение Земли сквозь эфир в опытах, которые мы описывали и которые, как мы помним, дали отрицательный результат.

Если бы новый «эфир» был бы похож на обычную среду, то встречный ветер при движении в нем действительно можно было бы обнаружить. Но все дело в том, что вакуум – совсем необычная среда. В нем вместе с плотностью энергии обязательно появляются натяжения, подобные натяжениям, возникающим в твердом теле при растяжении. Эти натяжения эквивалентны отрицательному давлению, поэтому так и говорят – возникает отрицательное давление.

В обычных средах давления и натяжения составляют малую долю полной плотности энергии (включающей массу покоя). В вакууме отрицательное давление огромно и по абсолютной величине равно плотности энергии. И в этом необычном свойстве заключена важная непохожесть вакуума на обычные среды.

Когда наблюдатель начинает в этой среде двигаться, на него будет набегать поток энергии, связанный с плотностью энергии, и, казалось бы, наблюдатель может измерить этот поток (это и будет «ветром»). Но, помимо этого потока, на наблюдателя будет набегать также поток энергии, связанный с отрицательным давлением. Такой поток будет по знаку отрицательным, но по модулю равен первому потоку и точно его скомпенсирует. В результате никакого «ветра» не будет! Как бы ни двигался по инерции наблюдатель, он всегда будет измерять одну и ту же плотность энергии вакуума (если такая есть) и одно и то же отрицательное давление, и никакого «ветра», связанного с движением, возникать не будет. Вакуум одинаков для любых наблюдателей, движущихся друг относительно друга по инерции.

К вакууму мы еще неоднократно будем возвращаться, а пока обратимся к оставленным нами на время элементарным частицам.

Как мы уже говорили выше, электромагнитное взаимодействие между частицами, несущими электрический заряд, обусловлено обменом фотонами.

Слабое взаимодействие также связано с наличием особых зарядов. Однако существенная разница между электромагнитным взаимодействием и слабым состоит в том, что последнее происходит только на очень малых расстояниях. Как мы видели, это связано с огромной массой W+‑, W‑, Z0‑бозонов. Взаимодействующие частицы могут «занимать» энергию для рождения и передачи бозонов‑переносчиков только на очень короткое время. Поэтому и взаимодействовать таким способом они могут, только находясь совсем близко друг к другу. А что было бы, если бы массы всех частиц‑переносчиков: W+‑, W‑, Z0‑бозонов и γ‑фотонов были бы равны нулю? Или еще вопрос: что было бы при очень больших температурах, когда W+‑, W‑, Z0‑бозонов могли бы рождаться столь же легко, как и γ‑фотоны?

Действительно, при больших температурах все частицы обладают большими энергиями и им нет нужды «занимать» энергию для рождения массивных бозонов. Эта энергия и так у них есть. Тогда обмен указанными бозонами происходил бы столь же эффективно, как и обмен γ‑фотонами, и осуществлялась бы полная симметрия между слабыми и электромагнитными взаимодействиями. Оказывается, в этих условиях (то есть при больших энергиях) проявляется единая сущность рассматриваемых взаимодействий, и они объединяются в единое электрослабое взаимодействие.

Таким образом, при температурах достаточно больших, как показывает расчет, превышающих миллион миллиардов градусов, существует единое электрослабое взаимодействие между частицами. Его переносчики – упомянутые бозоны и γ‑фотоны – имеются в изобилии и не обладают массами. Оказывается, что при этом нет массы не только у переносчиков взаимодействия, но и у всех перечисленных выше частиц – кварков и лептонов! В этом смысле они подобны фотонам. Что же происходит с понижением температуры?

Явная симметрия между электромагнитным и слабым взаимодействием нарушается, пропадает. Как и почему это происходит?

Дело в том, что в игру вступают новые поля и их кванты – новые частицы, о которых мы пока ничего не говорили. Это так называемые частицы Хиггса, названные по имени их изобретателя. Они‑тο и нарушают симметрию. Если бы не было этих полей, то все частицы оставались бы безмассовыми и при низких температурах, и симметрия между электромагнитным и слабым взаимодействиями сохранялась бы. Но прежде чем говорить о хиггсовских полях и нарушении симметрии между слабым и электромагнитным взаимодействиями, мы хотим напомнить читателю один простой опыт.

Представим себе шарик, который может кататься в ложбине, имеющей симметричную форму. Если положить шарик в любое место ложбины, то он скатится вниз на дно и, поколебавшись вокруг наинизшей точки, остановится на дне ложбины. Читатель, наверное, помнит, что чем выше поднимать какой‑либо груз над наинизшим возможным уровнем, тем больше будет в поле тяготения его потенциальная энергия, пропорциональная высоте подъема. Таким образом, когда шарик находится где‑то на склоне ложбины, его потенциальная энергия тем больше, чем он выше, а значит, чем дальше он находится от оси симметрии. На дне ложбины шарик имеет наименьшую энергию или, как иногда говорят, шарик находится на дне потенциальной ямы.

Пока все очень просто. Давайте теперь поставим вопрос: всегда ли при симметричной форме ложбины шарик успокаивается в положении на оси симметрии? Нет, это не всегда так. Сделаем в нашей ложбинке в центре небольшую горку. Где бы мы ни помещали теперь шарик, он, скатываясь, будет успокаиваться не на оси симметрии, а в наинизших точках сбоку от центральной горки. Его положение в покое будет явно несимметричным, несмотря на совершенно симметричную ложбину с горкой.

Правда, если положить шарик точно на вершину центральной горки, то он останется лежать в симметричном положении. Но это не может продолжаться долго, ибо такое положение неустойчиво и при малейшем возмущении он скатится вбок, занимая устойчивое несимметричное положение.

Этот пример показывает, как в совершенно симметричной системе с симметричным начальным положением (на вершине горки) возникает явно несимметричное устойчивое окончательное состояние. При этом нарушение симметричного состояния и то, куда скатится шар, зависят от случая и происходят внезапно, как говорят, спонтанно. Поэтому такой процесс нарушения симметрии получил название спонтанного.

Вернемся к частицам и полям. При их взаимодействиях также может возникать потенциальная энергия. При этом величина потенциальной энергии может условно описываться положением шарика в ложбине. В разных ситуациях ложбина может быть с центральной горкой или без таковой. Конечно, с непривычки читателю трудно представить себе, какое отношение поле может иметь к шарику в ложбине. Но абстрактные картинки широко распространены в науке. Здесь, в этой картинке, высота шарика над дном ложбины описывает потенциальную энергию поля.

Вернемся теперь к хиггсовским полям. Они могут находиться в двух состояниях. При температуре больше миллиона миллиардов градусов поля существуют в виде отдельных элементарных частиц. С понижением температуры до указанного значения хиггсовские поля претерпевают, как говорят, фазовый переход, они «конденсируются» подобно воде из охлаждаемого перегретого пара. При этом возникает «конденсат» хиггсовских полей, не зависящий ни от места в пространстве, ни от времени. И в создавшихся условиях его никак нельзя устранить. Таким образом, это, по существу, вакуум. Физики так и говорят – возник «новый вакуум».

Положение шарика на вершине центральной горки соответствует «старому вакууму». При больших температурах форма ложбины была другой, ее склоны поднимались вверх сразу от центра горки, и это положение шарика было устойчивым. «Старый вакуум» иногда называют «ложным вакуумом» или «вакуумноподобным состоянием». (Этот последний термин мы часто будем употреблять.) С понижением температуры форма ложбин приобретает вид ложбины с центральной горкой.

Образование нового вакуума эквивалентно скатыванию шарика в наинизшее состояние – в ложбину с центральной горки. Шарик скатывается в наинизшее энергетическое состояние и успокаивается на дне ложбины сбоку от центральной горки. Но положение его явно несимметрично. Возникло «перекошенное» состояние.

Поэтому хиггсовские поля расщепляются на непохожие составляющие. Одной соответствует квант – массивная частица, не обладающая спином, другой – частица нулевой массы, которая поглощается частицами‑переносчиками, и из‑за этого W+‑, W‑, Z0‑бозоны приобретают массу (мы не будем здесь объяснять, почему это происходит). Одновременно приобретают массу частицы материи с полуцелыми спинами – кварки и некоторые (а может быть, и все) лептоны. Последнее получается из‑за того, что они взаимодействуют с несимметричным конденсатом хиггсовских полей, составивших новый (несимметричный) вакуум. Мы и здесь не будем пояснять, как это происходит. Подобное пояснение достаточно сложно, а мы и так, наверное, несколько перегрузили читателя необычной информацией.

Фотон же – переносчик только электромагнитных взаимодействий – остался безмассовым.

Вот к каким многогранным последствиям привело «скатывание» хиггсовских полей с понижением температуры в несимметричное состояние нового вакуума. Спонтанно нарушилась симметрия.

Наверное, несколько абстрактно и непривычно выглядят рассуждения о симметричном и несимметричном положении шарика, о «скатывании» полей с энергетических горок. Но ничего не поделаешь, даже в простейшем изложении от читателя здесь требуется некоторая внимательность и фантазия.

Теперь после «скатывания» уже переносчики слабого взаимодействия приобрели массу. Эта масса делает слабое взаимодействие чрезвычайно близкодействующим, а безмассовый фотон по‑прежнему обеспечивает электромагнетизму дальнодействие. Теперь и не узнать былой симметрии. Та симметрия, которая была явной и очевидной при больших температурах, теперь нарушилась и стала скрытой.

Вот почему физикам было так трудно ее распознать в условиях сегодняшней Вселенной. Но они это сумели сделать! За создание единой теории электрослабых взаимодействий С. Вайнберг, Ш. Глэшоу и А. Салам были в 1979 году удостоены Нобелевской премии.

Теория рассмотренных процессов в самом начале расширения Вселенной, когда были огромные температуры, была предложена советским физиком Д. Киржницем. Позднее эта теория разрабатывалась им совместно с молодым физиком А. Линде.

Не все детали описанной выше картины подтверждены с одинаковой степенью надежности. Так, пока не обнаружены хиггсовские массивные частицы. По крайней мере один сорт таких тяжелых частиц должен остаться после описанных коллизий, и он должен существовать в сегодняшней Вселенной. Хотя обнаружить подобные частицы в эксперименте очень трудно, но физики верят в успех подобных поисков.

Обратимся теперь к сильным взаимодействиям. Частицы, испытывающие сильное взаимодействие, – кварки, и не испытывающие его – лептоны, выглядят по этому признаку как совершенно различные, их превращение друг в друга кажется невозможным.

Сильное взаимодействие, как уже было сказано, связано с наличием у кварков «цветных» зарядов, и поэтому его иногда называют цветной силой.

Начнем с рассмотрения следующего вопроса. Почему все же кварки находятся в связанном состоянии внутри бариона или мезона? Разве нельзя придать кварку достаточно большую энергию, оторвать его от других кварков (как бы сильно они ни были связаны друг с другом) и заставить вылететь из бариона?

Как мы увидим, парадоксальность ситуации заключается в том, что кварки почти совсем не связаны, когда находятся внутри адрона (то есть бариона или мезона), они свободны!

Для того чтобы разобраться в этом удивительном обстоятельстве, вернемся ненадолго к электромагнитному взаимодействию.

Рассмотрим заряженную частицу, например, позитрон в вакууме. Мы уже знаем, что в вакууме непрерывно происходит рождение и уничтожение электрон‑позитронных пар – «кипение» вакуума. Таким образом, наш изолированный позитрон в действительности окружен возникающими и исчезающими положительными и отрицательными зарядами. Несмотря на кратко· временность существования этих зарядов, они успевают обменяться с позитроном виртуальными фотонами, то есть провзаимодействовать. При этом отрицательные заряды будут притягиваться к позитрону, а положительные отталкиваться. В результате вокруг позитрона все время будет некоторый небольшой избыток отрицательного заряда, который частично экранирует положительный заряд позитрона.

Явление это получило название поляризации вакуума. Она приводит к тому, что другие удаленные реальные частицы чувствуют заряд не «голого» позитрона, а частично заэкранированного – одетого в «шубу» из противоположных по знаку зарядов, то есть проявление положительного заряда позитрона будет ослаблено. Этот «ослабленный» заряд позитрона и измеряется в обычных опытах.

Если теперь пробные реальные частицы подносить к позитрону все ближе и ближе, то они будут проникать в глубь экранирующей «шубы». Между пробным зарядом и «голым» позитроном будет оставаться все более тонкий слой, а значит, экранирование станет ослабевать.

Таким образом, на малых расстояниях эффективный заряд позитрона становится больше, то есть электромагнитное взаимодействие усиливается по сравнению с простым законом Кулона, если в него подставить заряд позитрона, измеренный со сравнительно большого расстояния.

Таков вывод квантовой электродинамики – науки об электромагнитном взаимодействии элементарных частиц.

Вернемся теперь к цветным зарядам и обусловленным ими сильным взаимодействиям. Кстати, теория, описывающая эти взаимодействия, называется, по аналогии с квантовой электродинамикой, квантовой хромодинамикой.

Согласно выводам квантовой хромодинамики, рождение виртуальных пар кварков и антикварков должно приводить к эффектам экранирования цветных зарядов так же, как это было в квантовой электродинамике. Однако здесь возможен новый процесс, который отсутствует в квантовой электродинамике. Вспомним, что переносчики электромагнитных сил – фотоны – электронейтральны. Поэтому фотоны не могут порождать фотоны. В отличие от них переносчики цветной силы – глюоны – сами обладают цветным зарядом, а значит, могут производить новые виртуальные глюоны. Этот процесс ведет к «размазыванию» цветового заряда, то есть к явлению, прямо противоположному экранированию. И на малых расстояниях этот процесс преобладает над экранированием.

Теперь частица с цветовым зарядом, подходя все ближе к кварку и проникая все глубже в облако размытого цветового заряда, встречает в центральных частях все меньший и меньший заряд, и на достаточно малых расстояниях интенсивность взаимодействия ее с кварком ослабевает. Это явление называют асимптотической свободой частиц на совсем малых расстояниях, так как они практически не взаимодействуют и свободны. С увеличением же расстояния все более далекие части размазанного цветового заряда включаются во взаимодействие с частицей, и его эффективность нарастает, поддерживая постоянной силу взаимодействия. Согласно современным представлениям с увеличением расстояния цветная сила не уменьшается (как в случае электрической силы), а остается постоянной. Поэтому, чтобы все дальше и дальше удалять взаимодействующие цветовой силой частицы друг от друга, надо затрачивать энергию, и при росте расстояния между частицами требуемая энергия нарастает линейно с расстоянием.

Это необычное свойство цветной силы, вероятно, и обусловливает невозможность вырвать изолированный кварк из адрона. Ситуация похожа на такую, когда взаимодействующие частицы как бы связаны резиновым шнуром. Если сообщить кварку очень большую энергию, то «резиновый шнур» разорвется и на месте разрыва за счет сообщенной энергии возникнет пара «кварк и антикварк». Улетающий кварк утащит за собой возникающий на месте разрыва антикварк, и вместе они составят мезон, который и вылетит из адрона вместо одиночного кварка.

Таким образом, кварки «заперты» внутри адронов. Они образуют системы, которые в целом нейтральны по цвету. А поскольку глюоны тоже цветозаряжены, то они также «заперты» внутри адронов. Вот почему, несмотря на то, что переносчики сильного взаимодействия – глюоны – обладают нулевой массой, как и фотоны, сильное взаимодействие, в отличие от электромагнитного, не простирается на большие расстояния, а ограничено примерно объемом адронов. Размер адронов порядка размеров атомного ядра.

Как уже говорилось, при температуре более миллиона миллиардов градусов существует единое электрослабое взаимодействие. При меньшей температуре оно распадается на электромагнитное и слабое. Внешне эти взаимодействия совсем не похожи друг на друга. Сильное (цветное) даже при столь высоких температурах держится совершенно особняком, оно не похоже на электрослабое <


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.092 с.