II. Галактики и их строение. Виды галактик — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

II. Галактики и их строение. Виды галактик

2021-01-29 78
II. Галактики и их строение. Виды галактик 0.00 из 5.00 0 оценок
Заказать работу

Содержание

I. ВВЕДЕНИЕ.. 2

II. ГАЛАКТИКИ и ИХ СТРОЕНИЕ. ВИДЫ ГАЛАКТИК.. 3

1. Как открыли другие галактики. 3

2. «Великий Спор». 4

3. Классификация Хаббла. 6

3.1.Типы галактик. 6

3.2. Причины различия галактик. 9

III. НАША ГАЛАКТИКА МЛЕЧНЫЙ ПУТЬ и ЕЕ СОСЕДИ.. 10

1. Млечный Путь и Галактика. 10

2. Размеры и строение нашей галактики. 12

3. Звездные скопления. 16

4. Межзвездная среда. 19

5. Движение звезд в Галактике. 23

6. Вращение Галактики. 24

IV. ЗАКЛЮЧЕНИЕ.. 25

V. СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ.. 27

 


 

  Наступило время для того, когда, выражаясь языком поэта, «как будто не все пересчитаны звезды, как будто наш мир не открыт до конца»? Просто самая древняя из наук прошла через свою непомерно затянувшуюся юность и вступила в зрелый период. Иосиф Шкловский.  

I. ВВЕДЕНИЕ

 

Тысячелетиями человечество обращало свои взгляды на окружающий мир, и стремилось вырваться за пределы окружающего его мира.

Небесный купол, усеянный мириадами звезд, с незапамятных времен волновал воображение ученых, поэтов живущих на Земле.

Что есть Земля, Луна, Солнце, звезды? Где начало и где конец Вселенной?

Столетиями мы были узниками Солнечной системы.

Проникая все дальше и дальше, астрономы нашли такой предел, и оказалось, что наше Солнце – одна из огромного числа звезд, образующих систему под названием Галактика.

 


II. ГАЛАКТИКИ и ИХ СТРОЕНИЕ. ВИДЫ ГАЛАКТИК

Великий Спор»

По-настоящему, окончательно внегалактические туманности - другие галактики - были открыты в 20-х годах нашего столетия. В апреле 1920 года в Национальной академии наук США состоялась публичная дискуссия между двумя известными астрономами Харлоу Шепли и Гербертом Кертисом. Это был "великий спор" в основном о том, что представляют собой спиральные туманности.

 Кертис доказывал, что Туманность Андромеды - это другая галактика, что она удалена от нас на расстояние около 500000 световых лет (в действительности - 2300000 световых лет).

 Шепли придерживался иной точки зрения. Он считал, что диаметр нашей Галактики не менее 300000 световых лет (втрое больше, чем на самом деле) и большинство наблюдаемых нами туманностей размещается внутри Галактики. Внегалактические туманности, вероятно, где-то есть, но они так далеки от нас, что мы их просто не можем увидеть.

 У того и другого астронома были и другие доводы в пользу своих позиций. Однако каждый остался при своем мнении - спор закончился "вничью". Но стало очевидным, что нужны новые наблюдения

туманностей и новые уточненные данные о масштабах огромного звездного мира, в котором мы живем.

 И вскоре решающее слово было сказано. Его произнес великий американский астроном Эдвин Хаббл (1889-1953). Впрочем, этим человеком мог бы быть и Джордж Ричи. Он сделал снимки туманности в созвездии Треугольника (М 33, так обозначаются объекты, включенные в каталог Мессье). По ним было видно, что спиральные ветви этой "туманности" буквально усыпаны звездами. К сожалению, изображения звезд получились нерезкими, размытыми. И Ричи не сумел доказать, что открыл звезды в далекой звездной системе.

 То, что это действительно звезды, удалось доказать несколько лет спустя Хабблу, 35-летнему астроному, работавшему, как и Ричи, на той же знаменитой обсерватории Маунт Вилсон (США). 2,5-метровый телескоп-рефлектор (в ту пору крупнейший в мире) дал возможность Хабблу получить четкие изображения звезд в трех туманностях. Это звезды в Туманности Андромеды, в Треугольнике и в Печи.

 Хаббл не только убедительно показал, что внешние части этих "туманностей" состоят из звезд, но и первый увидел среди них переменные звезды - цефеиды. Теперь их называют "маяками Вселенной".

Английский любитель астрономии, глухонемой юноша Джон Гудрайк, в 1784 году открыл, что четвертая по блеску звезда в созвездии Цефея - переменная, то есть происходят строго периодические колебания ее блеска. Мог ли Гудрайк думать, что он не только обнаружил интереснейший, ныне насчитывающий тысячи, класс пульсирующих звезд - цефеид, но и нашел один из ключей от "дверей" бездны мироздания? Но именно так это оказалось. В ХХ веке астрономы научились с помощью цефеид определять расстояния до звездных систем (звездных скоплений, галактик), в которых находили цефеиды.

 Возвратимся к открытию цефеид в "туманностях", которые исследовал Хаббл. Предположив, что цефеиды действительно принадлежат "туманностям" (а не случайно видны на их фоне) и что мигают они в других звездных системах точно так, как и в нашей собственной, Хаббл определил расстояния до этих таинственных туманных пятен. Расстояния оказались настолько большими, что стало ясно: "туманности" - это огромные звездные системы, расположенные за пределами Галактики. Итак, "великий спор" был, наконец, завершен в середине 20-х годов нынешнего века.


 

Классификация Хаббла

 

Классификация Хаббла возникла как чисто морфологическая (связанная с формой) и была основана на том, как выглядят галактики в оптическом диапазоне.

 Встречаются галактики различных форм, размеров и светимостей; некоторые из них изолированные, но большинство имеет соседей или спутников, оказывающих на них гравитационное влияние. Как правило, галактики спокойны, но нередко встречаются и активные. В 1925 Хаббл предложил классификацию галактик, основанную на их внешнем виде. Позже ее уточняли Хаббл и Шепли, затем Сэндидж и наконец Вокулер. Все галактики в ней делятся на 4 типа: эллиптические, линзовидные, спиральные и неправильные.

Типы галактик


Эллиптические (E) галактики имеют на фотографиях форму эллипсов без резких границ и четких деталей. Их яркость возрастает к центру. Это вращающиеся эллипсоиды, состоящие из старых звезд; их видимая форма зависит от ориентации к лучу зрения наблюдателя. При наблюдении с ребра отношение длин короткой и длинной осей эллипса достигает ~ 5/10 (обозначается E5).

 

Линзовидные (L или S0) галактики похожи на эллиптические, но, кроме сфероидального компонента, имеют тонкий быстро вращающийся экваториальный диск, иногда с кольцеобразными структурами наподобие колец Сатурна. Наблюдаемые с ребра линзовидные галактики выглядят более сжатыми, чем эллиптические: отношение их осей достигает 2/10.

 

Спиральные (S) галактики также состоят из двух компонентов – сфероидального и плоского, но с более или менее развитой спиральной структурой в диске. Вдоль последовательности подтипов Sa, Sb, Sc, Sd (от «ранних» спиралей к «поздним») спиральные рукава становятся толще, сложнее и менее закручены, а сфероид (центральная конденсация, или балдж) уменьшается. У спиральных галактик, наблюдаемых с ребра, спиральные рукава не видны, но тип галактики можно установить по относительной яркости балджа и диска.

Неправильные (I) галактики бывают двух основных видов: магелланового типа, т.е. типа Магеллановых Облаков, продолжающие последовательность спиралей от Sm до Im, и немагелланового типа I0, имеющие хаотические темные пылевые полосы поверх сфероидальной или дисковой структуры типа линзовидной или ранней спиральной.


 

Типы L и S распадаются на два семейства и два вида в зависимости от наличия или отсутствия проходящей через центр и пересекающей диск линейной структуры (бар), а также центральносимметричного кольца. Существуют и другие схемы классификации

галактик, основанные на более тонких морфологических деталях (по форме), но пока еще не развита объективная классификация, основанная на фотометрических, кинематических и радиоизмерениях.

Состав. Два структурных компонента – сфероид и диск – отражают различие в звездном населении галактик, открытое в 1944 немецким астрономом В.Бааде (1893–1960).

Население I, присутствующее в неправильных галактиках и в рукавах спиралей, содержит голубые гиганты и сверхгиганты спектральных классов O и B, красные сверхгиганты классов K и M, а также межзвездные газ и пыль с яркими областями ионизованного водорода. В нем присутствуют и мало массивные звезды главной последовательности, которые видны вблизи Солнца, но неразличимы в далеких галактиках.

Население II, присутствующее в эллиптических и линзовидных галактиках, а также в центральных областях спиралей и в шаровых скоплениях, содержит красные гиганты от класса G5 до K5, субгиганты и, вероятно, субкарлики; в нем встречаются планетарные туманности и наблюдаются вспышки новых

Первоначально считалось, что эллиптические галактики содержат только Население II, а неправильные – только Население I. Однако выяснилось, что обычно галактики содержат смесь двух звездных населений в разных пропорциях. Детальный анализ населений возможен только для нескольких близких галактик, но измерения цвета и спектра далеких систем показывают, что различие их звездных населений может быть значительнее, чем думал Бааде.

Внешний вид галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Э. Хаббл избрал самый простой метод классификации галактик по внешнему виду, и нужно сказать, что хотя в последствии другими выдающимися исследователями были внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по прежнему остается основой классификации галактик.


 

Причины различия галактик

Еще со времен Хаббла астрономы пытались установить, под действием каких процессов галактики принимают ту или иную форму. В некоторых из ранних теорий предполагалось, что разные типы галактик представляют собой эволюционную последовательность.

Как только астрономы поняли процесс звездной эволюции и научились определять возраст звезд, (это стало возможно в 50-х годах), оказалось, что галактики всех типов имеют примерно одинаковый возраст. Почти в каждой галактике присутствует хотя бы несколько звезд с возрастом в несколько миллиардов лет. Отсюда следует, что ни эллиптические, ни неправильные галактики не могут быть старше остальных.

Однако эллиптические галактики состоят почти исключительно из старых звезд, в то время как галактики других хаббловских типов содержат относительно больше молодых звезд. Таким образом, хаббловская последовательность все же имеет некоторое отношение к возрастам. По-видимому, форма галактики связана со скоростью образования в ней новых молодых звезд уже после ее рождения, а следовательно, и с распределением звезд по возрастам. В эллиптических галактиках очень мало звезд возникло после стадии образования галактики и поэтому мы наблюдаем здесь ничтожное количество молодых звезд. В галактиках типа Sa звезды продолжают образовываться до сих пор, но скорость этого процесса невелика, в галактиках типа Sb темп звездообразования выше, галактики типа Sc очень активны, а наиболее бурно звездообразование протекает в галактиках типа Irr 1.

Эти результаты навели исследователей на мысль о том, что последовательность хаббловских типов упорядочивает галактики по степени сохранения ими газа и пыли: неправильные галактики сберегли большую часть своего газа и своей пыли для постепенного рождения все новых и новых звезд, в то время как эллиптические галактики израсходовали почти весь свой исходный газ на первую взрывную вспышку звездообразования. Согласно современным представлениям два важнейших фактора, определяющих форму галактики, это, во-первых, начальные условия (масса и момент вращения) и, во-вторых, окружение (т.е. членство в скоплении или наличие близких спутников). В этом отношении галактика похожа на человека: ее характер зависит как от наследственности, так и от общества, в котором она "вращалась".


 

  Картина звездного неба все еще остается самою величественною изо всех картин, а книга о небе-самою занимательною из всех книг. Будем же любоваться этой картиной и вглядываться в нее все пристальнее и пристальнее; будем читать эту книгу, чтобы стать разумнее и совершеннее. К.Фламмарион.

 

Млечный Путь и Галактика

В безлунные осенние вечера вдали от ярко освещенных домов и улиц, любуясь звёздным небом, можно увидеть белую полосу, протянувшуюся через все небо. Это Млечный Путь.

Согласно одному из древних мифов, Млечный Путь – это дорога с Олимпа на Землю. Согласно другому – это пролитое Герой молоко.

Млечный Путь опоясывает небесную сферу по большому кругу. Жителям северного полушария Земли, в осенние вечера удается увидеть ту часть Млечного Пути, которая проходит через Кассиопею, Цефей, Лебедь, Орел и Стрельца, а под утро появляются другие созвездия. В южном полушарии Земли Млечный Путь простирается от Стрельца к созвездиям Скорпион, Циркуль, Центавр, Южный Крест, Киль, Стрела.

Млечный Путь, проходящий через звездную россыпь южного полушария, удивительно красив и ярок. В созвездиях Стрельца, Скорпиона, Щита много ярко светящихся звездных облаков. Именно в этом направлении находится центр нашей Галактики. В этой же части Млечного Пути особенно четко выделяются темные облака космической пыли- темные туманности. Если бы не было этих темных, непрозрачных туманностей, то Млечный Путь в направлении к центру Галактики был бы ярче в тысячу раз.

Глядя на Млечный путь, нелегко вообразить, что он состоит из множества неразличимых невооруженным глазом звёзд. Но люди догадались об этом давно. Одну из таких догадок приписывают ученому и философу Древней Греции - Демократу. Он жил почти на две тысячи лет раньше, чем Галилей, который впервые доказал на основе наблюдений с помощью телескопа звездную природу Млечного Пути. В своём знаменитом “Звездном вестнике” в 1609 году Галилей писал: “Я обратился к наблюдению сущности или вещества Млечного Пути, и с помощью телескопа оказалось возможным сделать её настолько доступной нашему зрению, что все споры умолкли сами собой благодаря наглядности и очевидности, которые и меня освобождают от многословного диспута.

В самом деле Млечный Путь представляет собой не что иное, как бессчетное множество звёзд, как бы расположенных в кучах, в какую бы область не направлять телескоп, сейчас же становится видимым огромное число звёзд, из которых весьма многие достаточно ярки и вполне различимы, количество же звёзд более слабых не допускает вообще никакого подсчета”.

Какое же отношение звёзды Млечного Пути имеют к единственной звезде Солнечной системы, к нашему Солнцу? Ответ сегодня общеизвестен. Солнце - одна из звёзд нашей Галактики, Галактики – Млечный Путь. Какое же место занимает Солнце в Млечном Пути? Уже из того факта, что Млечный Путь опоясывает наше небо по большому кругу, ученые сделали вывод, что Солнце находится вблизи главной плоскости Млечного Пути.

Чтобы получитъ более точное представление о положении Солнца в Млечном Пути, а затем и представить себе, какова в пространстве форма нашей Галактики, астрономы (В.Гершель, В.Я.Струве и др.) использовали метод звездных подсчетов, суть которых в том, что в различных участках неба подсчитывают число звёзд в последовательном интервале звёздных величин. Если допустить, что светимости звёзд одинаковы, то по наблюдаемому блеску можно судить о расстояниях до звезд, далее, предполагая, что звёзды в пространстве расположены равномерно, рассматривают число звёзд, оказавшихся в сферических объёмах, с центром в Солнце.

На основе этих подсчетов уже в 18 веке был сделан вывод о “сплюснутости” нашей Галактики.

В состав Галактики входят не менее 150 млрд. Звёзд, подобных нашему Солнцу. Вблизи центральной области Галактики звёздная плотность в миллионы раз больше, чем вблизи Солнца. Участвуя во вращении Галактики, наше Солнце мчится со скоростью

более 220 км/с, совершая один оборот за 200-250 миллионов лет. Галактика имеет сложное строение и сложный состав. Современные исследования Галактики требуют технических средств 20 века, но началось исследование Галактики с пытливого вглядывания в простирающийся над нашими головами Млечный Путь.

Галактика всегда обозначается и пишется с большой буквы.

Звездные скопления

Самые маленькие коллективные члены Галактики - это двойные и кратные звёзды. Так называются группы из двух, трех, четырех и более звезд, в которых звёзды удерживаются близко друг к другу благодаря взаимному притяжению согласно закону всемирного тяготения. В двойных и кратных звёздах таких огромных тел – звёзд (солнц) два или несколько. Они притягивают друг друга, удерживают друг друга и, возможно, другие тела меньших масс внутри сравнительного небольшого объёма.

Расстояние, разделяющее компоненты двойных звезд, могут быть весьма различны. У тесных двойных они так близки друг друга, что происходят сложные физические процессы взаимодействия, связанные с явлениями приливов.

В широких парах расстояние между компонентами составляет десятки тысяч астрономических единиц, периоды обращений столь велики, что измеряются тысячелетиями и орбитальное движение при наблюдениях не удаётся обнаружить. Связуемость компонентов в таких системах определяют по их относительной близости на небе и по общности собственного движения.

Среди 30 ближайших к нам звёзд 13 входят в состав двойных и тройных систем. Измерение скорости движения звёзд по их орбитам позволило оценить массу звёзд, входящих в двойные системы. Оказалось, что и в этом отношении звёзды различны. Некоторые из них по массе уступают Солнцу, а другие превосходят его. При этом для всех звезд, в том числе и для Солнца, выполняется условие - чем больше светимость звезды, тем больше и её масса. Вдвое большей массе соответствуют приблизительно вдесятеро большая светимость, так что различие в светимостях у звезд гораздо большее, чем различие в массах.

Двойные и кратные звёзды часто состоят из звёзд различных типов, например, звезда белый гигант может комбинироваться с красным карликом, или желтая звезда средней светимости- с красным гигантом.

Более крупными коллективными членами Галактики, чем двойные и кратные звёзды, являются рассеянные звёздные скопления.

       Звездные скопления. Хоро­шо известно, что звезды неравно­мерно распределены по небу. На­пример, вблизи Млечного Пути сла­бые звезды встречаются заметно чаще, чем вдали от него. Это не кажущийся эффект. Звезды дейст­вительно неравномерно заполняют пространство. Наиболее наглядно это проявляется в существовании групп из большого числа звезд, называе­мых звездными скоплениями.

 

Примером звездных скоплений, хорошо видимых невооруженным глазом, являются скопления Плеяды и Гиады (оба в созвездии Тельца). В Плеядах нормальный глаз видит 5—7 слабых звездочек, располагающихся в виде малень­кого ковшика (по этому  скоплению удобно проверять остроту зрения).  В телескоп в Плеядах заметны сот­ни звезд. Гиады — скоп­ление не столь компактное, как Плеяды, но оно содержит более яркие звезды. Рядом с Гиадами — красноватый Альдебаран — яр­чайшая звезда в созвездии Тельца.

Невооруженным глазом на небе заметно всего несколько скоплений. Но в телескоп их можно видеть сотни. Наблюдения показали, что звездный состав скоплений различен.

Оказалось, что некоторые скопления состоят из сравнительно молодых, некоторые — из старых звезд. Звезды внутри скопления имеют близкий возраст и, следовательно, связаны общим происхождением.

Наблюдается два типа скоплений — рассеянные и шаровые. Рассеянные скопления содержат десятки, сотни, а наиболее крупные — тысячи звезд и выглядят в телескоп сверкающей россыпью. Плеяды и Гиады относятся к этому типу. Среди рассеянных скоплений встречаются как сравнительно ста­рые, с возрастом в несколько мил­лиардов лет, так и очень молодые, в которых еще сохранились много голубых горячих звезд высокой све­тимости. Эти звезды значительно массивнее Солнца, и поэтому (как мы уже знаем) продолжительность жизни у них более короткая, чем у звезд других типов. Существование в рассеянных скоплениях таких звезд говорит о том, что образование скоплений продолжается и в наше время. Сравнительно молодым скоплением являются Плеяды: его возраст около 108 лет.

Рассеянные скопления можно найти не в любой части неба. Почти все они наблюдаются вблизи Млеч­ного Пути. Именно там, вблизи плоскости диска Галактики, наи­более активно происходит образо­вание звезд.


Шаровые скопления по размеру, как правило, больше рас­сеянных и содержат сотни тысяч звезд. Все они очень далеки от нас. Лишь одно-два можно заметить невооруженным глазом или в бинокль, но даже они из-за громадного расстояния видны как крошечные светящиеся пятнышки. На фотографиях шаровые скопления обычно выглядят как целый рой огромного числа звезд. Кажется, что в центре скопления звезды сливаются в сплошную светлую массу. Но на самом деле даже там между звездами достаточно много свободного пространства, что­бы они двигались, не сталкиваясь друг с другом. В отличие от рассеянных скоплений, в шаровых мы не наблюдаем молодых звезд. Это очень старые звездные системы. Их возраст трудно точно оценить. Основываясь на теории звездной эволюции, ученые получают оценки возраста наиболее старых скоплений в 13—18 млрд. лет.

Всего в нашей Галактике известно около 150 шаровых скоплений. В отличие от рассеянных звездных скоплений, шаровые скопления слабо концентрируются к полосе Млечного Пути. Зато практически все они наблюдаются в одной половине неба, в центре которой находится созвездие Стрельца. Такая особенность распределения отражает структуру нашей звездной системы — Галактики: в созвездии Стрельца находится ее центр. Шаровые скопления, в отличие от рассеянных, относятся к сферической составляющей Галактики. Имеется ещё один тип членов Галактики - так называемые звёздные ассоциации. Они были открыты академиком В.А.Амбарцумяном, который обнаружил, что наиболее горячие звёзды-гиганты, расположены на небе как бы отдельными гнёздами. Обычно в таком гнезде два-три десятка звёзд - горячих гигантов спектральных классов. Ассоциация занимает большой объем, размером в несколько десятков или сотен парсек, в который обычно порядком, как и в другие места Галактики, входят в большом количестве звезды-карлики и звёзды средней светимости.

Звёзды горячие гиганты движутся со скоростью 5-10 км/с, и им требуется всего несколько сотен тысяч лет или, самое большее, несколько миллионов лет, чтобы уйти из ассоциации. Поэтому факт существования горячих гигантов в звёздных ассоциациях указывает на то, что эти звёзды недавно сформировались в ассоциациях и не успели ещё из них уйти.

Именно открытие звёздных ассоциаций привело к утверждению, что наряду со старыми звёздами, есть и молодые и очень молодые звёзды, что звёздообразование в Галактике было длительным процессом и продолжается в наши дни.

Межзвездная среда

Межзвездный газ. В состав нашей Галактики входят не только звезды. Наблюдения показали, что межзвездное пространство нельзя считать абсолютно пустым. Основная масса межзвездной среды приходится на разряженный газ. Этот газ обладает способностью слабо светиться, если горячие звезды освещают его ультрафиолетовым светом, и излучать потоки радиоволн, которые можно уловить радиотелескопами. Межзвездный газ имеет при­мерно такой же химический состав, как и большинство наблюдаемых звезд. Он преимущественно состоит из легких газов (водорода и гелия).

Большая часть межзвездного газа сосредоточена в пределах диска Галактики, где межзвездная среда образует вблизи плоскости симмет­рии диска газопылевой слой тол­щиной в несколько сотен световых лет. В пределах этого слоя находится и наше Солнце с окружающими его звездами. Газопылевой слой вместе со звездами диска принимает участие во вращении Галактики.

Даже вблизи плоскости звездного диска концентрация частиц газа очень мала. У поверхности Земли, например, в 1 см3 содержится 3*1019 молекул воздуха, а в меж­звездном газе на два кубических сантиметра приходится в среднем только один атом газа. Но меж­звездный газ занимает такие боль­шие объемы пространства, что его полная масса в Галактике достигает нескольких процентов от суммарной массы всех звезд.

 

Газ в межзвездном простран­стве наблюдается в трех состояниях: ионизованном, атомарном и моле­кулярном.

Ионизованный газ. Горячие звезды мощным ультрафиолетовым излучением нагревают и ионизуют окружающий межзвездный газ. Нагре­тый газ излучает свет, и поэтому области, заполненные горячим га­зом, наблюдаются как светящиеся облака. Они называются светлыми газовыми туманностями. Темпера­тура газа в них составляет около 10000 К.

Самая заметная туманность рас­положена в созвездии Ориона и на­зывается туманностью Орио­на. В сильный бинокль или небольшой телескоп она видна как бесформенное облачко со слабым зеленоватым свечением. Это обла­ко состоит из горячего ионизован­ного газа, масса которого оцени­вается примерно в тысячу масс Солнца.

Атомарный газ. Основная масса межзвездного газа в диске Галак­тики удалена от горячих звезд и поэтому не ионизована и не излу­чает свет. Но такой «невидимый» газ все же можно наблюдать радио­астрономическими методами. Было доказано (вначале теоретически, а затем подтверждено наблюдениями), что атомы водорода, входящие в состав межзвездного газа, излу­чают радиоволны с длиной волны 0,21 м (с частотой 1420 МГц).

Радиоизлучение нейтрального межзвездного водорода было обна­ружено в 1951 г. Многочисленные измерения его интенсивности позво­лили установить общую массу газа в Галактике.

Атомарный газ распределен в пространстве неоднородно. Он обра­зует облака, между которыми газ более разрежен. Типичные размеры облаков достигают нескольких десят­ков световых лет, а средняя кон­центрация частиц в них — несколько атомов в 1 см3.

Молекулярный газ. Радионаблю­дения обнаружили в межзвездном пространстве в тысячи раз более плотные облака, состоящие из очень холодного газа, температура кото­рого не превышает 20—30 К. Из-за низкой температуры и повышенной плотности водород и другие эле­менты в этих облаках объединены в молекулы. Поэтому их называют молекулярными. В основном они состоят из молекул H2. Молекулы водорода, в отличие от, атомов, не испускают радиоизлучения. Зато многие другие молекулы, входящие в состав облаков, излучают радио­волны на определенных частотах. По радиоизлучению в молекуляр­ных облаках было найдено несколь­ко десятков молекулярных соедине­ний, например СО, СО2, H2O, NН3. Имеются и более сложные молеку­лы — формальдегида, этилового и метилового спирта и др. Молекулы могут возникать и существовать только в наиболее плотных газовых облаках. В разреженной межзвезд­ной среде под действием ультра­фиолетового излучения звезд они быстро распадаются. Масса многих молекулярных облаков превышает 100 тыс. масс Солнца. Это самые массивные образования в диске Галактики.

Полагают, что в молекуляр­ных облаках происходит зарождение звезд из газа. Существует и об­ратный процесс — в межзвездную среду непрерывно поступает газ, «сбрасываемый» звездами. Мы уже знаем, что звезды, вспыхивающие как новые и сверхновые, теряют часть своей массы. Но и у обычных звезд, таких, как Солнце, на опреде­ленном этапе эволюции (после превращения в красный гигант) происходит отделение газовой обо­лочки, которая, медленно расширяясь, уходит в межзвездное пространство. Такие расширяющиеся оболочки известны у сотен звезд. Они называются планетарными ту­манностями. В центре планетарной туманности всегда наб­людается звезда. Причина свечения этих объектов та же, что и у светлых газовых туманностей,— ионизующее ультрафиолетовое излучение горячей звезды.

         Межзвездная пыль. В середине прошлого века известный рус­ский астроном В. Я. Струве обосно­вал предположение, что межзвездное пространство не абсолютно прозрачно; свет в нем может поглощаться и рассеиваться, вследствие чего да­лекие звезды выглядят слабее, чем можно ожидать. Газ практически не поглощает видимого излучения. По­этому, помимо газа, межзвездная среда должна содержать пыль.

Окончательно существование поглощения света в межзвездной среде было доказано в 30-х годах нашего века. В случае сравнительно близких звезд поглощение почти незаметно:

чтобы световой поток был ослаблен межзвездной средой всего лишь на один процент, свету требуется пройти расстояние в несколько десятков световых лет. Но если расстояние до звезд измеряется тысячами све­товых лет, то межзвездная среда ослабляет приходящий от них свет и несколько раз.

Межзвездная среда не только ослабляет свет далеких звезд, но еще и вызывает изменение их цвета. Звез­ды, свет которых испытал сильное ослабление, кажутся нам более красными. Это происходит потому, что лучи красного света меньше поглощаются и рассеиваются меж­звездными пылинками, чем синие. Измеряя ослабление света звезд на различных длинах волн, можно су­дить о свойствах межзвездной пыли. Выяснилось, что межзвездные пы­линки очень мелкие — размером около 0,5 мкм. Они состоят в ос­новном из углерода, кремния и «намерзших» на них молекул меж­звездного газа.

В межзвездном пространстве пыль везде сопутствует газу. На ее долю приходится около 1% от массы газа. Поэтому концентрация пыли всегда выше, а прозрачность среды ниже там, где много газа. Это хорошо видно на примере молекулярных облаков — самых плотных газовых облаков в межзвезд­ной среде. Из-за присутствующей в них пыли они практически не­прозрачны и выглядят на небе как темные области, почти лишенные звезд. Редкие звездочки, просвечивающие сквозь их менее плотные части, кажутся сильно покрасневшими. Газопылевые образования, которые из-за низкой прозрачности выглядят как темные области, на­зываются темными туманностями.

В ясную ночь, наблюдая Млечный Путь даже невооруженным гла­зом, можно заметить, что он имеет неровные очертания, а в созвездии Лебедя даже разделяется на два параллельно идущих рукава. Это наглядный результат проекции на Млечный Путь темных туманностей, большинство которых находится вблизи плоскости Галактики.

Происхождение пыли не вполне еще ясно. Теоретические расчеты и наблюдения показали, что пылинки могут конденсироваться в атмосферах  холодных звезд, откуда давление излучения должно выталкивать их в межзвездное пространство.

 Космические лучи и межзвездное магнитное поле. Помимо разряженного газа и пыли, в межзвездном пространстве с огромной скоростью, близкой к скорости света (300 000 км/с), движется большое число элементарных частиц и ядер различных атомов. Эти частицы летят по всей нашей Галактике в самых различных направлениях. Они называются космическими лучами.

Частицы космических лучей удается регистрировать непосредственно при помощи специальных физиче­ских приборов — счетчиков быстрых частиц, устанавливаемых на космических аппаратах. Сквозь атмосферу Земли космические лучи пробиться не могут. Сталкиваясь с атомами земной атмосферы, они разбивают их, рождая целые ливни из элементарных частиц. Лишь небольшой процент космических частиц избегает столкновений в атмосфере и достигает Земли высоко в горах. Поэтому в различных странах организованы специальные высокогорные станции по наблюдению и исследованию космических лучей.

Не все космические частицы при­ходят к нам из межзвездных глубин. Многие имеют солнечное проис­хождение. Они рождаются главным образом при солнечных вспышках. Однако самые быстрые части­цы, летящие с околосветовой ско­ростью и обладающие огромной энер­гией, приходят в Солнечную систему из далеких просторов Галактики.

Основными источниками космических лучей в Галактике считаются остатки сверхновых звезд и пульсары — быстро вращающиеся и сильно намагниченные нейтронные звезды.

Мы уже знаем, что остатки сверх новых звезд являются мощными источниками синхротронного радио излучения, которое возникает при движении быстрых электронов в магнитном поле. Но наблюдения показали, что синхротронное радиоизлучение приходит к нам и из тех областей межзвездного простран­ства, где остатков сверхновых звезд нет. Следовательно, и между звездами существует магнитное поле, заставляющее быстрые электроны космических лучей излучать радиоволны.

5. Движение звезд в Галактике

Долгое время звезды не случайно считались «неподвижными». Измеряя взаимное расположение звезд на небе, астрономы только в начале XVIIв. заметили, что координаты некоторых ярких звезд (Альдебарана, Сириуса)изменились по сравнению с теми, которые были получены в древности.

Собственным движением звезды называется ее видимое угловое смещение за год по отношению к слабым далеким звездам.

     Смещение звезд на небе в течение года невелико. Однако на протяжении десятков тысяч лет собственные движения звезд существенно сказываются на их положении, вследствие чего меняются привычные очертания созвездий.

Большинство из 300.000 звезд, собственное движение которых измерено, меняют свое положение значительно медленнее – смещение составляет всего лишь сотые и тысячные доли угловой секунды за год.

В настоящее время собственные движения звезд определяют, сравнивая положение звезд на фотографиях данного участка звездного неба, полученных на одном и том же телескопе с промежутком времени в несколько лет или даже десятилетий, Но даже в этом случае смещение сравнитьельно близких звезд на фоне более далеких столь мало, что его можно определить только с помощью специальных микроскопов.

 

 

Вращение Галактики

 

Пространственные скорости звезд относительно Солнца(или Земли) составляют, как правило, десятки километров в секунду.

Изучение собственных движений и лучевых скоростей показало, что Солнечная система движется со скоростью 20 км/с в направлении созвездия Геркулеса. Точка небесной сферы, в направлении которой она движется относительно ближайщих звезд, называется апексом Солнца.

Анализ собственных движений и лучевых скоростей звезд по всему небу показал, что они движутся вокруг центра Галактики. Это движение звезд воспринимается как вращение нашей звездной системы, которое подчиняется определенной закономерности: угловая скорость вращения убывает по мере удаления от центра, а линейная возрастает, достигая максимального значения на том растояниии, на котором находится Солнце, а затем практически остается постоянной.

Звезды, газ и другие объекты, составляющие галактический диск, движутся по орбитам, близким к круговым. Солнце вместе с близлежащими звездами обращается вокруг центра Галактики со скоростью около 250 км/с, совершая один оборот примерно за 200 млн.лет. Расстояние от Солнца до центра Галактики составляет 23-28 тыс.св.лет (7-9 тыс.пк).

Скорость обращения Солнца практически совпадает со скоростью, с которой на данном расстоянии от центра Галактики движется волна уплотнения, формирующая спиральные рукава. Эт


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.076 с.