Классификация вяжущих и углеродных материалов — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Классификация вяжущих и углеродных материалов

2020-12-27 60
Классификация вяжущих и углеродных материалов 0.00 из 5.00 0 оценок
Заказать работу

К этим материалам  относятся:

- различные виды коксов;

- битумы (применяются для асфальтоукладочных и кровельных работ);

- нефтяные пеки.

Нефтяные пеки, в свою очередь, бывают:

- пропитывающие,

- волокнообразующие;

- связующие;

- брикетные;

- специальные.

Битумы нефтяные – твердые или жидкие водонерастворимые органические материалы, представляющие собой смесь углеводородов с остатками от перегонки нефтей.

Различают битумы вязкие и жидкие. Битумы вязкие (БНД 130/200 и др.) используются для дорожных щебеночных покрытий.

Битумы жидкие:

- СГ – густеющие со средней скоростью,

- МГ – медленно густеющие со средней скоростью,

- БГ – быстро густеющие, используются в гидротехнических сооружениях и для гидроизоляции.

- битумы кислотно-упорные (для аккумуляторов),

- кровельные БНК,

- изоляционные марки БНИ.

Асфальт – смесь битума с минеральными материалами, придающими битуму повышенную устойчивость воздействию температуры.

Газойль – нефтяная фракция с пределами кипения от 230 до 360°С. Занимает промежуточное положение между керосином и маслом.

Гудрон – черная смолистая масса разной консистенции, остающаяся после отгонки нефти легкой фракции и большей части масляных фракций. Обычно гудрон составляет 10¸20% от нефти.

Кокс – пористая твердая масса (от серого до черного цвета) высокомолекулярных тугоплавких и высокоамортизированных углеводородов с незначительным содержанием солей. Основная ценность кокса – низкая зольность, позволяющая применять его для изготовления электродов.

 

 

Классификация нефтехимического сырья

Эта группа нефтепродуктов выступает в качестве сырья для предприятий химической отрасли:

- углеводороды ароматической группы:

1) толуол;

2) бензол;

3) нафталин;

4) различные ксилолы и так далее.

- пиролизное сырье:

1) нефтяной заводской и попутные газы;

2) прямогонные фракции бензинов;

3) газы, содержащие олефины и прочее.

- разные виды парафинов (жидких и твердых);

- церезины.

Жидкие парафины используются как сырье при производстве синтетических видов жирных кислот, белково – витаминных концентратов, а также при получении поверхностно-активных веществ,

Специальные нефтепродукты

Эта группа включает в себя:

- сырье для технического углерода (термогазйоль);

- консистентные виды смазок:

1) защитные;

2) антифрикционные;

3) уплотнительные.

- осветительный керосин;

- топливные присадки;

- присадки к маслам;

- деэмульгаторы;

- водород;

- элементная сера и так далее.

Пластичные смазки включают группу нефтепродук­тов, предназначенных для смазки узлов трения, когда смазоч­ные масла не обеспечивают жидкостного трения из-за негер­метичности узла или трудности заполнения, для уплотнения; подвижных и неподвижных соединений, создания защитных покрытий на металлических поверхностях от атмосферной коррозии.

В большинстве случаев пластичные смазки представляют собой мазеобразные, иногда почти твердые, пластичные вещества коллоидной структуры с неньютоновскими свойствами в диапазоне рабочих температур.

 

Классификация нефтепродуктов определена ГОСТ  28576-90, который в международной системе ИСО соответствует номеру 8681-86.

 

Товарные нефтепродукты

2.1 Бензин   Бензин – основное топливо для двигателей внутреннего сгорания. От его качества зависит работа двигателя, его долговечность, скорость передвижения. Смесь паров бензина с воздухом засасывается в цилиндр и сжимается поршнем. Сжатая смесь поджигается электрической ис­крой от запальной «свечи». Углеводороды, входящие в состав сме­си, сгорают с образованием оксида углерода (IV) и воды, а так­же оксида углерода (II). Образующиеся газы двигают поршень, совершая работу. Чем сильнее сжимается смесь паров бензина и воздуха, тем больше мощность двигателя. Однако смеси некото­рых углеводородов, входящих в состав бензина, сгорают со взры­вом еще до достижения максимального сжатия. И происходит это не от электрической искры, а от высокой температуры в цилин­дре. При этом взрывная волна стихийно распределяется в сжа­том пространстве цилиндра. Она с огромной скоростью ударяет о поршень, о чем свидетельствует характерный стук в двигателе. Та­кое взрывное сгорание, называемое детонацией, приводит к преж­девременному износу двигателя. Было установлено, что детонацию в основном вызывают угле­водороды нормального (неразветвленного) строения. В то же вре­мя углеводороды с разветвленной углеродной цепью, а также не­предельные и особенно ароматические углеводороды допускают значительное сжатие паров бензина с воздухом. Основными показателями бензина являются детонационная стойкость, давление насыщенных паров, фракционный состав, химическая стабильность и др. Ужесточение в последние годы экологических требований к качеству нефтяных топлив ограничило содержание в бензинах ароматических углеводородов и сернистых соединений. Октановое число ОЧ – условный показатель, характеризующий стойкость бензинов к детонации и численно соответствующий детонационной стойкости модельной смеси изооктана и н-гептана. ОЧ изооктана принято за 100 пунктов, а н-гептана – за 0. Для автомобильных бензинов (кроме А–76) ОЧ измеряется двумя методами: моторным и исследовательским. Октановое число определяется на специальных установках путём сравнения характеристик горения испытуемого топлива и эталонных смесей изооктана с н-гептаном. Испытания проводят в двух режимах: жёстком (частота вращения коленчатого вала 900 об/мин, температура всасываемой смеси 149 ºС, переменный угол опережения зажигания) и мягком (600 об/мин, температура всасываемого воздуха 52 ºС, угол опережения зажигания 13 град.). Получают соответственно моторное (ОЧМ) и исследовательское ОЧ (ОЧИ). Разности между ОЧМ и ОЧИ называется чувствительностью и характеризует степень пригодности бензина к разным условиям работы двигателя. Среднее арифметическое между ОЧМ и ОЧИ называют октановым индексом и приравнивают к дорожному октановому числу, которое нормируется стандартами некоторых стран (например, США) и указывается на бензоколонках как характеристика продаваемого топлива. При производстве бензинов смешением фракций различных процессов важное значение имеют так называемые ОЧ смешения (ОЧС), которые отличаются от расчётных значений. ОЧС зависят от природы нефтепродукта, его содержания в смеси и ряда других факторов. У парафиновых углеводородов ОЧС выше действительных на 4 пункта, у ароматических зависимость более сложная. Различие может быть существенным и превышать 20 пунктов. Октановое число смешения важно также учитывать при добавлении в топливо оксигенатов. Октановое число бензиновой фракции, получаемой непосредственно перегонкой нефти, не превышает 65 – 70, такой бензин не подходит для современных двигателей. Бензин с более высоким октановым числом получается при крекинге. В зависимости от типа крекинга бензин имеет октановое число 70 - 80. Качество бензина можно улучшить также риформингом. Риформинг – это процесс ароматизации бензинов, осуществляемый путём нагревания их в присутствии платинового катализатора. Более дешёвый и лёгкий путь увеличения октанового числа состоит в добавлении к бензину некоторых веществ, изменяющих характер горения топлива. Так, детонационную стойкость бензина увеличивают небольшие количества тетраэтилсвинца Pb(C2H5)4. Такой бензин называют этилированным. Однако при его использовании в окружающую среду из выхлопных газов попадают чрезвычайно вредные для неё и здоровья человека соединения свинца. Чтобы отличить этилированный бензин от обычного, его окрашивают в красновато-фиолетовый цвет. Во многих странах и большинстве городов России использование этилированного бензина запрещено.   Фракционный состав Фракционный состав  бензинов характеризует испаряемость топлива, от которой зависит запуск двигателя, распределение топлива по цилиндрам двигателя, полнота сгорания, экономичность двигателя. Испаряемость определяется температурой перегонки 10, 50 и 90 % (об.) выкипания фракций бензина. Температура выкипания 10 % бензина характеризует пусковые свойства. При температуре ниже предельных значений в системе питания двигателя могут образовываться паровые пробки, а при более высоких температурах запуск двигателя затруднён. В США пусковые свойства двигателя характеризуют количеством топлива, выкипающем до 70 0С. Температура выкипания 50 % характеризует скорость перехода двигателя с одного режима работы на другой и равномерность распределения бензиновых фракций по цилиндрам. Температура выкипания 90 % фракций и конца кипения влияют на полноту сгорания топлива и его расход, а также на нагарообразование в камере сгорания в цилиндре двигателя. В ГОСТ Р 51105-97, который действует с 01.01.99 г., ФС бензина определяется при температуре выкипания 70, 100 и 180 ºС.   Давление насыщенных паров Давление насыщенных паров даёт дополнительное представление об испаряемости бензина, а также о возможности образования газовых пробок в системе питания двигателя. Чем выше давление насыщенных паров бензина, тем выше его испаряемость. По ФС бензина рассчитывают индекс испаряемости. Бензины, применяющиеся в летнее время, имеют более низкое ДНП. Для обеспечения необходимых пусковых свойств товарного бензина, в его состав включают лёгкие компоненты: изомеризат, алкилат, бутан, фр. н.к. – 62 ºС.       Химическая стабильность Химическая стабильность в процессе хранения, транспортирования и применения бензинов возможны изменения в их химическом составе, обусловленные реакциями окисления и полимеризации. Окисление приводит к понижению октанового числа бензинов и повышению его склонности к нагарообразованию. Для оценки ХС используют показатели содержания фактических смол, индукционного периода окисления.   Содержание сернистых и ароматических соединений Активные сернистые соединения, содержащиеся в бензинах, вызывают сильную коррозию топливной системы и транспортных емкостей; полнота очистки бензинов от этих веществ контролируется анализом на медной пластинке. Неактивные сернистые соединения коррозию не вызывают, но образующиеся при их сгорании газы вызывают быстрый абразивный износ деталей двигателя, снижают мощность, ухудшают экологическую обстановку. Среди ароматических соединений наиболее опасными для здоровья и жизни человека являются бензол и полициклические. Их токсическое действие объясняется возможностью его окисления в организме. В связи с этим в последних нормативных документах ограничено допустимое содержание серы, бензола и ароматических соединений в бензинах.
2.1 Дизельное топливо   Дизельное топливо - жидкий продукт, использующийся как топливо в дизельном двигателе внутреннего сгорания. Обычно под этим термином понимают топливо, получающееся из керосиново-газойлевых фракций прямой перегонки нефти, которое обладает целым набором характеристик: · цетановое число, определяющее высокие мощностные и экономические показатели работы двигателя; - фракционный состав, определяющий полноту сгорания, дымность и токсичность отработанных газов двигателя; - вязкость и плотность, обеспечивающие нормальную подачу топлива, распыливания в камере сгорания и работоспособность системы фильтрования; - низкотемпературные свойства, определяющие функционирование системы питания при отрицательных температурах окружающей среды; - степень чистоты, характеризующая надёжность и долговечность работы системы фильтрования топливной аппаратуры и цилиндр-поршневой группы двигателя; - температура вспышки, определяющая условия безопасности применения топлива на дизелях; - наличие сернистых соединений, непредельных углеводородов и металлов, характеризующее нагарообразование, коррозию и износы.   Цетановое число Цетановое число - основной показатель воспламеняемости дизельного топлива. Оно определяет запуск двигателя, жёсткость рабочего процесса (скорость нарастания давления), расход топлива и дымность отработанных газов. Чем выше цетановое число топливо, тем ниже скорость нарастания давления и тем менее жёстко работает двигатель. Однако с повышением цетанового числа топлива сверх оптимального, обеспечивающего работу двигателя с допустимой жёсткостью, ухудшается его экономичность в среднем на 0,2-0,3% и дымность отработанных газов на единицу цетанового числа повышается на 1-1,5 единицу Хартриджа. Цетановое число топлив зависит от их углеводородного состава. Наиболее высокими цетановыми числами обладают нормальные парафиновые углеводороды, причём с повышением их молекулярной массы оно повышается, а по мере разветвления - снижается. Чем выше температура кипения топлива, тем выше цетановое число, и эта зависимость носит почти линейный характер; лишь для отдельных фракций цетановое число может понижаться, что объясняется их углеводородным составом. Цетановые числа дизельных топлив различных марок, вырабатываемых отечественной промышленностью, характеризуются следующими значениями: цетановое число, ед. 47-51; 45-49; 40-42; 38-40. Известны присадки для повышения цетанового числа дизельных топлив -изопропил - или циклогексилнитраты. Они допущены к применению, например, "Миксент 2000". Установление оптимальных цетановых чисел имеет большое практическое значение, поскольку с углублением переработки нефти в состав дизельного топлива будут вовлекаться лёгкие газойли каталитического крекинга, коксования и фракции, обладающие относительно низкими цетановым числами. Цетановое число определяют по ГОСТ 3122-67, сравнивая воспламеняемость испытуемого топлива с эталонным (смеси цетана с а-метилнафталином в разных соотношениях). За рубежом для характеристики воспламеняемости топлива наряду с цетановым числом используют дизельный индекс. Этот показатель нормируется и в отечественной технической документации на дизельное топливо, поставляемое на экспорт, - ТУ 38001162-85. Между дизельным индексом и цетановым числом топлива существует такая зависимость: Дизельный индекс  20 30 40 50 62 70 80 Цетановое число                                                          30 35 40 45 55 60 80   Фракционный состав. Характер процесса горения в двигателе определяется двумя основными показателями - фракционным составом и цетановым числом. На сгорание топлива более лёгкого фракционного состава расходуется меньше воздуха, при этом за счёт уменьшения времени, необходимого для образования топливовоздушной смеси, более полно протекают процессы смесеобразования. Влияние фракционного состава топлива для различных типов двигателей неодинаково. Двигатели с предкамерным и вихрекамерным смесеобразованием вследствие наличия разогретых до высокой температуры стенок предварительной камеры и более благоприятных условий сгорания менее чувствительны к фракционному составу топлива, чем двигателя с непосредственным впрыском.   Вязкость и плотность Вязкость и плотность определяют процессы испарения и смесеобразования в дизеле. Более низкая плотность и вязкость обеспечивают лучшее распыливание топлива; с повышением указанных показателей качества увеличивается диаметр капель и уменьшается полное их сгорание, в результате увеличивается удельный расход топлива, растёт дымность отработанных газов. С увеличением вязкости топлива возрастает сопротивление топливной системы, уменьшается наполнение насоса, что может привести к перебоям в его работе. При уменьшении вязкости дизельного топлива количество его, просачивающееся между плунжером и втулкой, возрастает по сравнению с работой на более вязком топливе, в результате снижается производительность насоса.От вязкости зависит износ плунжерных пар. Вязкость топлива в пределах 1,8-7,0 мм/с практически не влияет на износ плунжеров топливной аппаратуры современных быстроходных дизелей.   Степень чистоты дизельного топлива. Этот показатель определяет эффективность и надёжность работы двигателя, особенно его топливной аппаратуры. Чистоту топлива оценивают коэффициентом фильтруемости, который представляет собой отношение времени фильтрования через фильтр из бумаги БФДТ при атмосферном давлении десятой порции фильтруемого топлива к первой. На фильтруемость топлив влияет наличие воды, механических примесей, смолистых веществ, мыл нафтеновых кислот. В товарных дизельных топливах содержится в основном растворённая вода от 0,002 до 0,008%, которая не влияет на коэффициент фильтруемости. Не растворённая в топливе вода -0,01% и более - приводит к повышению коэффициента. Присутствие в топливе поверхностно-активных веществ - мыл нафтеновых кислот, смолистых и серо-органических соединений - усугубляет отрицательное влияние эмульсионной воды на фильтруемость топлива.   Температура вспышки Сернистые соединения, непредельные углеводороды и металлы влияют на нагарообразование в дизелях и являются причиной повышенной коррозии и износов. При сгорании топлив, содержащих непредельные углеводороды, вследствие окисления в цилиндре двигателя образуются смолистые вещества, а затем нагар. В результате этого падает мощность и повышается износ деталей двигателя.   Низкотемпературные свойства Сократить потери при производстве зимнего дизельного топлива можно введением в топливо депрессорных присадок (в сотых долях процента от 0,3 до 1,0 кг/т). Депрессорные присадки, достаточно эффективно понижая температуру застывания, практически не влияют на температуру помутнения топлива, что в значительной мере ограничивает температуру его применения (товарный вид). Нередки случаи, когда для снижения температуры застывания на местах применения используют смеси летних сортов дизельных топлив с реактивным топливом (ТС) и бензином. Неквалифицированное разбавление летнего, топлива керосином, а в ряде случаев бензином приводит к резкому увеличению износа двигателей и повышению пожаровзрывоопасности транспортных средств. В этих условиях практически единственным технически и экономически правильным решением, позволяющим эффективно и надёжно эксплуатировать автотракторную технику в осенне-зимний период, является увеличение выпуска топлив с депрессорными присадками. Большой опыт, накопленный при проведении испытаний топлив с депрессорными присадками, позволил выявить при их применении ряд особенностей, учёт которых необходим для обеспечения безотказной, высокопроизводительной и долговечной работы автотракторной техники.

Список литературы

1.Вержичинская С.В., Дигуров Н.Г., Синицин С.А. Химия и технология нефти и газа: учебное пособие.-М.: ФОРУМ: инфра-м, 2016. – 416с.: ил.

2. Ахметов С.А. Технология глубокой переработки нефти и газа. Уфа: «ГИЛЕМ», 2002. – 671с.

3. Кирсанов, Ю. Г. Анализ нефти и нефтепродуктов: [учеб.-метод. пособие] /
Ю. Г Кирсанов, М. Г Шишов, А. П. Коняева; [науч. ред. О. А. Белоусова]; М-во образования и науки Рос. Федерации, Урал. федер. ун-т. – Екатеринбург:   Изд-во Урал. ун-та, 2016. - 88 с.


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.