Структура и функция G-белка при передаче сигнала — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Структура и функция G-белка при передаче сигнала

2020-12-27 217
Структура и функция G-белка при передаче сигнала 0.00 из 5.00 0 оценок
Заказать работу

G-белки (англ. G proteins) — это семейство белков, относящихся к ГТФазам и функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену ГДФ на ГТФ как молекулярный функциональный «выключатель» для регулировки клеточных процессов. G-белки принадлежат к большой группе ферментов ГТФаз.

G-белки были обнаружены и исследованы Альфредом Гилманом (University of Texas Southwestern Medical Center at Dallas
Dallas, TX, USA) и Мартином Родбеллом (National Institute of Environmental Health Sciences Research Triangle Park, NC, USA), которые получили за это открытие Нобелевскую премию по физиологии и медицине 1994 года.

G-белки биологических мембран имеют гетеротримерную структуру. Они состоят из большой альфа-субъединицы (около 45 килодальтон - кДа), а также меньших бета- и гамма-субъединиц (рис. 809251152).

 

 

Рис. 809251152. Структура G-белка. Альфа-субъединица изображена с полостью, символизирующей сайт связывания ГДФ или ГТФ

ГТФ-азный цикла G‑ белков

В покое на постсинаптической мембране находится комплекс рецептор‑G-белок c ГДФ (рис. 809251335, 809251304). 

 

  Рис. 809251335. Цикл активации G-белка под действием G-белок-связанного рецептора. 1 - фаза покоя; 2 - лиганд присоединяется и активирует рецептор; G-белок сталкивается с активированным рецептором, диссоциирует, альфа-субъединица теряет ГДФ; 3 - альфа-субъединица активируется, присоединяя ГТФ; альфа-субъедница присоединяется к эффектору и активирует его. Эффектор, в свою очередь, катализирует синтез вторичного мессенджера; 4 - дефосфорилирование ГТФ деактивирует альфа‑субъединицу, которая отсоединяется от эффектора, готовая начать весь цикл сначала. L – медиатор (лиганд, агонист).  

 

Использованные в рис. 809251335 обозначения фаз ГТФ-азного цикла G‑белков не являются обязательными. В литературе выделяют 5, 6 и более фаз. На рис. 809251304 использовано иное обозначения. Однако принципиальной разницы в представленных схемах нет. Рисунок 809251304 Вам при желании легче будет воспроизвести.

 

 

 

Рис. 809251304. ГТФ-азный цикла G‑белков. 1- фаза покоя; 2 - оединяется медиатора (лиганда) к рецептору; 3 - диссоциация G‑белка; 4 - активация эффектора; 5 - дефосфорилирование ГТФ. Красное окрашивание рецептора на рисунке символизирует активацию; R – рецептор; Е - эффектор; L – медиатор (лиганд, агонист).

 

Связывание медиатора (агониста) с рецептором приводит к белок-белковому взаимодействию между рецептором и G-белком и ускоряет диссоциацию ГДФ. В результате образуется короткоживущий комплекс агонист - рецептор - G-белок, не связанный ни с каким нуклеотидом.

Связывание с этим комплексом молекулы ГТФ снижает сродство рецептора к G‑белку, что приводит к диссоциации комплекса и высвобождению рецептора.

Потенциально рецептор может активировать большое количество молекул G-белка, обеспечивая, таким образом, высокий коэффициент усиления внеклеточного сигнала на данном этапе.

Активированная альфа-субъединица G‑белка диссоциирует от бета-гамма-субъединиц и вступает во взаимодействие с соответствующим эффектором, оказывая на него активирующее или ингибирующее воздействие.

Альфа-субъдиница с присоединенным с ней ГТФ способна взаимодействовать с эффектором в мембране - ферментами, такими, как аденилатциклаза, или, возможно, ионными каналами. Фермент может активироваться или ингибироваться, а ионный канал - открываться или закрываться. Конкретные примеры будут рассмотрены ниже и в последующих лекциях.

Взаимодействие с эффектором, однако, длится до тех пор, пока альфа-субъединица, являющаяся ГТФ-азой, удерживает ГТФ.

Вскоре присоединенный ГТФ гидролизуется до ГДФ. Когда это происходит, альфа‑субъединица снова меняет свою конформацию и теряет способность активировать эффектор. После этого альфа-ГДФ взаимодействует с бета-гамма-комплексом и снова образует тримерный комплекс, завершая, таким образом, цикл.

Предполагают, что комплекс из бета-гамма-субъединиц тоже может (прямо или опосредованно) влиять на эффекторные ферменты и ионные каналы (рис. 809251405).

 

    Рис. 809251405. Влияние бета-гамма-субъединиц G‑белка на ионные каналы.  

 

    Рис. 809251405. Влияние бета-гамма-субъединиц G‑белка на ионные каналы (вариант для воспроизведения).  

Пример прямой активация калиевого канала субъединицами G-белка показан на рис. 809251442.

      Рис. 809251442. Прямая активация калиевого канала субъединицами G-белка.  

 

    Рис. 809251442. Прямая активация калиевого канала субъединицами G-белка (вариант для воспроизведения).  

Пример прямого ингибирования Са2+-канала субъединицами G-белка показан на рис. 809251458.

 

    Рис. 809251458. Прямое ингибирование Са2+‑канала субъединицами G-белка.  

 

    Рис. 809251512. Прямое ингибирование Са2+‑канала субъединицами G-белка (вариант для воспроизведения).  

Активация пресинаптических адренорецепторов (ауторецепторов) приводит к диссоциации G-белка и последующему ингибированию (закрытию) кальциевых каналов, т.е. снижению уровня освобождение медиатора (норадреналина)

Пример метаботропной модуляции ионных каналов показан на рис. 709200023.

 

    Рис. 709200023. Модуляция потенциал-зависимых кальциевых каналов норадреналином.  

 

 Пример регуляции экспрессии белков путем активации метаботропных рецепторов показан на рис. 809251517.

 

    Рис. 809251517. Регуляция экспрессии белков путем активации метаботропных рецепторов.  

 

42. Нервно-мышечный синапс скелетного мышечного волокна (этапы передачи сигнала)

Нервно-мышечный синапс (neuromuscular junction, myoneural junction) - соединение концевой ветви аксона мотонейрона спинного мозга с мышечной клеткой.

Но концевой пластинкой (End-Plate) чаще называют постсинаптическую мембрану, отсюда возбуждающий постсинаптический потенциал (ВПСП) чаще называют потенциалом концевой пластинки (ПКП).

НМС – типичный химический синапс.

Холинергический, потому что медиатором является ацетилхолин.

Н-холинергический [эн, не аш и не эйч], потому что агонистом ацетилхолина в этом синапсе является никотин. Часто такие синапсы называют никотиновыми.

Н-холинергический, мышечного типа, потому что антагонистами ацетилхолина в этом синапсе являются кураре и курареподобные вещества.

Нервный отросток проходя по сарколемме мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с цитолеммой мышечного волокна

 

  Этапы передачи возбуждения в НМС   1. Деполяризация пресинаптической мембраны пришедшим по аксону потенциалом действия (ПД). 2. Открытие потенциалзависимых Сa++‑каналов на пресинаптической мембране и поступление Сa++ в пресинапс (пассивный транспорт). 3. Выход в синаптическую щель ацетилхолина путем экзоцитоза. 4. Диффузия медиатора к постсинаптической мембране. 5. Взаимодействие ацетилхолина с Н‑холинорецепторами постсинаптической мембраны мышечного волокна. 6. Открытие никотиновых рецепторных каналов постсинаптических каналов, пассивный вход Na+ в мышечное волокно. 7. Образование потенциала концевой пластинки - ПКП (возбуждающего постсинаптического потенциала - ВПСП) в области постсинаптической мембраны. 8. Электротоническое распространение ПКП в околосинаптическую область. 9. Формирование ПД мышечного волокна на сарколемме околосинаптической области.   

 

  Ацетилхолин в синаптической щели быстро разрушается ацетилхолинэстеразой (АХЭ), превращаясь в холин (он вновь захватывается для по­следующего синтеза) и ацетат.  

 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.