Классификация типов охлаждения генераторов показана на рисунке 5.4. — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Классификация типов охлаждения генераторов показана на рисунке 5.4.

2020-12-08 212
Классификация типов охлаждения генераторов показана на рисунке 5.4. 0.00 из 5.00 0 оценок
Заказать работу

 
 

 

Система охлаждения бывает:

- непосредственной (статор и ротор выполняются с каналами и по этим каналам пропускается хладагент);

- косвенной (обдув частей хладагентом).

Виды охлаждения:

- воздушное;

- водородное;

- масляное;

- водяное.

Увеличение единичной мощности турбогенераторов реализуется главным образом за счет внедрения более интенсивных способов охлаждения без заметного увеличения габаритных размеров. Применение воздушного охлаждения ограничено мощностью генераторов. В России применяется при мощности генераторов до 160 МВт.

Для увеличения единичной мощности генератора необходимо увеличить плотность тока ротора или статора, для этого необходимо применять более эффективную систему охлаждения, не допускать перегрева активной части ротора, статора и изоляции. При увеличении температуры на 10 ºС в 2 раза ухудшаются свойства изоляции.

Для более эффективного охлаждения в синхронных генераторах применяют замкнутую систе­му охлаждения (рисунок 5.5), когда один и тот же объем газа циркулирует в замк­нутой системе, состоящей из генератора (объект охлаждения) 1, незави­симого вентилятора 2, трубопровода 3 и 5 и охладителя 4, в котором охлаждается нагретый в машине газ.

В крупных синхронных генераторах применяют в каче­стве охлаждающего газа водород. Особые свойства водорода обеспечивают водородному охлаждению ряд преимуществ:

1. Технический водород более чем в десять раз легче воздуха, что способствует снижению потерь на вентиляцию, а следователь­но, повышает КПД машины. Например, в турбогенераторе мощно­стью 150 тыс. кВт потери на вентиляцию при воздушном охлаж­дении составляют 1000 кВт, а при водородном охлаждении турбогенератора такой же мощности эти потери составляют всего лишь 140 кВт, т. е. более чем в семь раз меньше.

2. Благодаря повышенной теплопроводности водорода, кото­рая в 6 – 7 раз больше, чем у воздуха, он интенсивнее охлаждает машину. Это дает возможность при заданных габаритах изгото­вить машину с водородным охлаждением мощностью на 20 – 25% больше, чем при воздушном охлаждении.

3. Водородное охлаждение снижает опасность возникновения пожара в машине потому, что водород не поддерживает горения.

4. Водородное охлаждение увеличивает срок службы изоля­ции обмоток, так как при явлении короны благодаря отсутствию азота в машине не образуются нитраты – соединения, разъедаю­щие органические составляющие изоляционных материалов.

Эффективность водородного охлаждения повышается с рос­том давления водорода в машине (до 5.105 Па). Но наряду с перечисленными достоинствами водородное охлаждение имеет и недостатки. В основном водородное охлаждение ведет к усложнению и удорожанию, как самой машины, так и ее эксплуатации. Объясняется это, в первую очередь, необходимостью содержания целого комплекса устройств водородного хозяйства, обеспечивающего подпитку, очистку и поддержание требуемого давления водорода в системе охлаждения машины. Однако в машинах большой единичной мощности водородное охлаждение оправдано и дает большой экономический эффект.

Непосредственный контакт охлаждающего вещества с про­водниками обмоток и внутренними слоями магнитопроводов по­вышает интенсивность теплоотвода и позволяет существенно уве­личить удельные электромагнитные нагрузки машины (плотность тока и максимальное значение магнитной индукции). Обычно не­посредственное охлаждение применяют в электрических машинах весьма большой мощности, что позволяет значительно увеличить единичную мощность этих машин.

Минеральное масло теплопроводность (охлаждающая способность) в 20 раз лучше, чем у воздуха.

Дистиллированная вода охлаждает в 50 раз лучше чем воздух и в 7 раз – чем водород. При тех же размерах генератора допускается повышение мощности на 15 – 20 % турбогенераторов, а синхронных компенсаторов – на 30 %.

2.Силовые трансформаторы - устройство и принцип действия

 

  При транспортировке электроэнергии на большие расстояния для снижения потерь используется принцип трансформации. Для этого электричество, вырабатываемое генераторами, поступает на трансформаторную подстанцию. На ней повышается амплитуда напряжения, поступающего в линию электропередачи. Второй конец ЛЭП подключен на ввод удаленной подстанции. На ней для распределения электричества между потребителями осуществляется понижение напряжения. На обеих подстанциях трансформацией электроэнергии больших мощностей занимаются специальные силовые устройства: 1. трансформаторы; 2. автотрансформаторы. Они имеют много общих признаков и характеристик, но отличаются определенными принципами работы. Эта статья описывает только первые конструкции, у которых передача электроэнергии между разделенными обмотками происходит за счет электромагнитной индукции. При этом изменяющиеся по амплитуде гармоники тока и напряжения сохраняют частоту колебаний. Особенности устройства Силовые трансформаторы в энергетике устанавливаются на заранее подготовленные стационарные площадки с прочными фундаментами. Для размещения на грунте могут монтироваться рельсы и катки. Общий вид одного из многочисленных типов силовых трансформаторов, работающего с системами напряжений 110/10 кВ и обладающего величиной полной мощности 10 МВА, показан на фотографии ниже. Отдельные ярко выраженные элементы его конструкции снабжены подписями. Более подробно устройство основных частей и их взаимное расположение демонстрирует чертеж. Электрическое оборудование трансформатора размещается внутри металлического корпуса, изготовленного в форме герметичного бака с крышкой. Он заполнен специальным сортом трансформаторного масла, которое обладает высокими диэлектрическими свойствами и, одновременно, используется для отвода тепла от деталей, подвергаемых большим токовым нагрузкам. Гидравлическая схема трансформатора Упрощенно состав и взаимодействие ее основных элементов показано на картинке. Для залива/слива масла используются специальные задвижки и вкручивающаяся пробка, а запорный вентиль, расположенный внизу бака, предназначен для отбора проб масла и последующего проведения его химического анализа. Принципы охлаждения В силовом трансформаторе образовано два контура циркуляции масла: 1. внешний; 2. внутренний. Первый контур представлен радиатором, состоящим из верхнего и нижнего коллекторов, соединенных системой металлических трубок. Через них проходит нагретое масло, которое, находясь в магистралях охладителя, остывает и возвращается в бак. Внутри бака циркуляция масла может производиться:
  • естественным путем;
  • принудительно за счет создания давления в системе насосами.
Часто поверхность бака увеличивается за счет создания гофр — специальных металлических пластин, улучшающих теплообмен между маслом и окружающей атмосферой. Забор тепла от радиатора в атмосферу может выполняться обдувом системой вентиляторов или без них за счет свободной конвекции воздуха. Принудительный обдув эффективно повышает теплосъем с оборудования, но увеличивает затраты энергии на эксплуатацию системы. Они могут снизить нагрузочную характеристику трансформатора до 25%. Тепловая энергия, выделяемая современными трансформаторами повышенной мощности, достигает огромных величин. Об ее размере может служить тот факт, что сейчас за ее счет стали реализовывать проекты отопления промышленных зданий, расположенных рядом с постоянно работающими трансформаторами. В них поддерживаются оптимальные условия работы оборудования даже в зимнее время. Контроль уровня масла в трансформаторе Масло постоянно циркулирует внутри бака. Его температура зависит от целого комплекса воздействующих факторов. Поэтому объем его все время изменяется, но поддерживается в определенных границах. Для компенсации объемных отклонений масла служит расширительный бачок. В нем удобно наблюдать текущий уровень. Для этого используется маслоуказатель. Наиболее простые устройства изготавливают по схеме сообщающихся сосудов с прозрачной стенкой, заранее проградуированной в единицах объема. Подключения такого маслоуказателя параллельно расширительному баку вполне достаточно для контроля эксплуатационных характеристик. На практике встречаются и другие, отличные от этого принципа работы маслоуказатели. Защита от проникновения влаги Поскольку верхняя часть расширительного бака контактирует с атмосферой, то в ней устанавливают осушитель воздуха, препятствующий проникновению влаги внутрь масла и снижению его диэлектрических свойств. Защита от внутренних повреждений Важным элементом масляной системы является газовое реле. Его монтируют внутри трубопровода, соединяющего основной бак трансформатора с расширительным. За счет этого все газы, выделяемые при нагреве из масла и органической изоляции, проходят через емкость с чувствительным элементом газового реле. Этот датчик отстроен от работы на очень маленькое, допустимое газообразование, но срабатывает при его увеличении в два этапа: 1. на выдачу светового/звукового предупредительного сигнала обслуживающему персоналу о возникновении неисправности при достижении уставки первой величины; 2. на отключение силовых автоматических выключателей со всех сторон трансформатора для снятия напряжения при бурном газообразовании, свидетельствующем о начале мощных процессов разложения масла и органической изоляции, начинающихся при коротких замыканиях внутри бака. Дополнительная функция газового реле — контроль уровня масла в баке трансформатора. При снижении его до критической величины газовая защита может отработать в зависимости от настройки:
  • только на сигнал;
  • на отключение с выдачей сигнала.
Защита от аварийного повышения давления внутри бака На крышке трансформатора так монтируется выхлопная труба, чтобы ее нижний конец сообщался с емкостью бака, а масло поступало внутрь до уровня в расширителе. Верхняя часть трубы возвышается над расширителем и отводится в сторону, немного загибается вниз. Ее конец герметично закрыт стеклянной предохранительной мембраной, которая разрушается при аварийном повышении давления из-за возникновения нерасчетного нагрева. Другая конструкция подобной защиты основана на монтаже клапанных элементов, которые открываются при повышении давления и закрываются при его сбросе. Еще один вид — сильфонная защита. Она основана на быстром сжатии сильфона при резком повышении газа. В результате сбивается защелка, удерживающая боек, который в нормальном положении находится под воздействием сжатой пружины. Освобожденный боек разбивает стеклянную мембрану и тем самым осуществляет сброс давления. Электрическая схема силового трансформатора Внутри корпуса бака размещаются:
  • остов с верхней и нижней балкой;
  • магнитопровод;
  • обмотки высокого и низкого напряжения;
  • регулировочные ответвления обмоток;
  • низковольтный и высоковольтный отводы
  • нижняя часть вводов высокого и низкого напряжения.
Остов вместе с балками служит для механического закрепления всех составных деталей. Конструкция внутренних элементов Магнитопровод служит для снижения потерь магнитному потоку, проходящему через обмотки. Его изготавливают из сортов электротехнической стали шихтованным способом. По обмоткам фаз трансформатора протекает ток нагрузки. Материалами для их изготовления выбирают металлы: медь или алюминий с круглым либо прямоугольным сечением. Для изоляции витков используют специальные сорта кабельной бумаги или хлопчатобумажную пряжу. Концентрические намотанные обмотки выполняют в виде цилиндров, расположенных один в другом. Для стороны высокого напряжения (ВН) создается непрерывная или многослойная обмотка, а для низкого (НН) — винтовая и цилиндрическая. Обмотку НН располагают ближе к стержню: так легче выполнить слой для ее изоляции. Затем на нее устанавливают специальный цилиндр, обеспечивающий изоляцию между сторонами высокого и низкого напряжения, а на него монтируют обмотку ВН. Описанный способ монтажа показан на левой части нижерасположенной картинки с концентрическим размещением обмоток на стержне трансформатора. С правой стороны картинки показан способ размещения чередующихся обмоток, разделяемых изоляционным слоем. Для повышения электрической и механической прочности изоляции обмоток их поверхность пропитывают специальным сортом глифталевого лака.     Для подключения обмоток одной стороны напряжения между собой используют схемы:
  • звезды;
  • треугольника;
  • зигзага.
При этом концы каждой обмотки маркируют буквами латинского алфавита, как показано в таблице.
Тип трансформатора

Сторона обмотки

Низкого напряжения

Среднего напряжения

Высокого напряжения

начало конец нейтраль начало конец нейтраль начало конец нейтраль Однофазный а X — Ат Хт — А X —

Две обмотки три фазы

a Х 0 — — — А X 0 b Y         B Y   с г         C Z  

Три обмотки три фазы

a X   Ат Хт   А X   b Y 0   Yт 0 B Y 0 c Z     Хт   C Z  

Выводы от обмоток подключают к соответствующим токоотводам, которые монтируются на шпильки проходных изоляторов, расположенных на крышке бака трансформатора.

Для осуществления возможности регулировки величины выходного напряжения на обмотках делают ответвления. Один из вариантов выполнения регулировочных ответвлений показан на схеме.

Систему регулирования напряжения создают с возможностью изменения номинальной величины в пределах ±5%. Для этого выполняют пять ступеней по 2,5% в каждой.

У мощных силовых трансформаторов регулирование обычно создают на обмотке высокого напряжения. Это упрощает конструкцию переключателя ответвлений и позволяет повышать точность выходных характеристик за счет большего числа витков на этой стороне.

Для многослойных цилиндрических обмоток регулировочные ответвления выполняют на внешнем стороне слоя у окончания обмотки и компонуют их симметрично на одинаковой высоте относительно ярма.

У отдельных конструкций трансформаторов ответвления делают в средней части. При использовании оборотной схемы одна половина обмотки выполняется с правой намоткой, а вторая — с левой.

Для коммутации ответвлений используют трехфазный переключатель.

У него есть система неподвижных контактов, которые подключены к ответвлениям обмоток, и подвижных, осуществляющих коммутацию схемы за счет создания различных электрических цепей с неподвижными контактами.

Если ответвления сделаны около нулевой точки, то одним переключателем управляют работой сразу всех трех фаз. Это можно делать потому, что между отдельными частями переключателя напряжение не превышает 10% линейной величины.

Когда ответвления выполнены в средней части обмотки, то для каждой фазы используется свой, индивидуальный переключатель.


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.026 с.