Схемы системы воздушного отопления — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Схемы системы воздушного отопления

2020-12-06 244
Схемы системы воздушного отопления 0.00 из 5.00 0 оценок
Заказать работу

На рис. 10.1 даны принципиальные схемы местной системы воздушного отопления. Чисто отопительная система с полной рециркуляцией теплоносителя воздуха может быть бесканальной (рис. 10.1, а) и канальной (рис. 10.1, б). При бесканальной системе внутренний воздух, имеющий температуру £в, нагревается первичным теплоносителем в калорифере до температуры te и перемещается вентилятором. Наличие вертикального канала для горячего воздуха вызывает естественную циркуляцию внутреннего воздуха через помещение и калорифер. Эти две схемы применяют для местного воздушного отопления помещений, не нуждающихся в искусственной приточной вентиляции.

Для местного воздушного отопления помещения одновременно g его приточно-вытяжной вентиляцией используют две другие схемы, изображенные на рис. 10,1, в, г. По схеме на рис. 10.1, в с частичной рециркуляцией часть воздуха забирается снаружи, другая часть внутреннего воздуха подмешивается к наружному (осуществляется частичная рециркуляция воздуха). Смешанный воздух догревается в калорифере и подается вентилятором в помещение. Помещение обогревается всем поступающим в него воздухом, а вентилируется только той его частью, которая забирается снаружи. Эта часть воздуха удаляется из помещения в атмосферу (по каналу 7 на рис. 10.1, в).

Схема на рис. 10.1, г — прямоточная: наружный воздух в количестве, необходимом для вентиляции помещения, дополнительно нагревается для отопления, а после охлаждения до температуры помещения удаляется в таком же количестве в атмосферу.

Центральная система воздушного отопления — канальная. Воздух нагревается до необходимой температуры в тепловом центре здания и выпускается в помещения через воздухораспределители. Принципиальные схемы центральной системы приведены на рис. 10.2.

В схеме на рис. 10.2, а нагретый воздух по специальным каналам распределяется по помещениям, а охладившийся воздух по другим каналам возвращается для повторного нагревания в теплообменнике — калорифере. Совершается, как и в схеме на рис. 10.1, а, полная рециркуляция воздуха без вентиляции помещений. Теплопередача в калори-

фере соответствует теплопотерям помещении, т. е. схема является чисто отопительной.

Рис. 10.1. Принципиальные схемы местной системы воздушного отопления

а, б — полностью рециркуляционные; в —» частично рециркуляционная; a —прямоточная; 1— отопительный агрегат; 2 —> рабочая зона; 3 — канал нагретого воздуха; 4 — теплообменник-калорифер; 5 — воздухозабор; 6 — рециркули-

рующий воздух; 7 — канал вытяжной вентиляции

 

Рис. 10.2. Принципиальные схемы центральной системы воздушного отопления

а — полностью рециркуляционная; б — частично рециркуляционная; в — пря­моточная; г — рекуперативная; / — теплообменник-калорифер; 2 — канал на­гретого воздуха с воздухораспределителем на конце; 3 — канал внутреннего воз­духа; 4 -г- вентилятор; 5 — канал наружного воздуха; 6 — воздухо-воздушный теплообменник; 7 — рабочая зона

Схема на рис. 10.2, б с частичной рециркуляцией по действию не отличается от схемы на рис. 10.1, в. На рис. 10.2, в изображена прямоточная схема центральной системы воздушного отопления, аналогичная схеме на рис. 10.1, г.

В схемах на рис. 10.1, а, 6 и 10.2, а теплозатраты на нагревание воздуха определяются только теплопотерями помещений; в схемах на рис. 10.1, в и 10.2, б они возрастают в результате предварительного нагревания части воздуха от температуры наружного воздуха tн до температуры tв; в схемах на рис.10.1, г и 10.2, в теплозатраты наибольшие, так как весь воздух необходимо нагреть сначала от температуры tB до tB, а потом перегреть до te (тепловая энергия расходуется и на отопление, и на полную вентиляцию помещений).

Рециркуляционная система воздушного отопления отличается меньшими первоначальными вложениями и эксплуатационными затратами. Система может применяться, если в помещении допускается рециркуляция воздуха, а температура поверхности нагревательных элементов соответствует требованиям гигиены, пожаро- и взрывобезопас-ности этого помещения. Радиус действия центральной системы с естественной циркуляцией (без вентилятора) ограничен 8—10 м, считая по горизонтальному пути от теплового центра до наиболее удаленного вертикального канала. Объясняется это незначительностью действующего естественного циркуляционного давления, составляющего даже при значительной температуре нагретого воздуха всего лишь около 2 Па на каждый метр высоты канала.

Система воздушного отопления с частичной рециркуляцией устраивается с механическим побуждением движения воздуха и является наиболее гибкой. Она может действо­вать в различных режимах; в помещениях помимо частичной могут осуществляться полная замена, а также полная рециркуляция воздуха. При этих трех режимах система работает как отопительно-вентиляционная, чисто вентиляционная и чисто отопительная. Все зависит от того, забирается ли и в каком количестве воздух снаружи и до какой температуры нагревается воздух в калорифере.

Прямоточная система воздушного отопления отличается самыми высокими эксплуатационными затратами, Ее применяют, когда требуется вентиляция помещений в объеме не меньшем, чем объем воздуха для отопления (например, в помещениях категорий А и Б, где выделяются вещества, взрывоопасные и пожароопасные, а также вредные для здоровья людей, обладающие неприятным запахом). Для уменьшения теплозатрат в прямоточной системе при сохранении ее основного преимущества — полной вентиляции помещений — используют схему с рекуперацией (см. рис. 10.2, г), где применен дополнительный воздухо-воздушный теплообменник, позволяющий утилизировать часть теплоты уходящего воздуха для нагревания наружного воздуха.

Местное воздушное отопление

Местное воздушное отопление предусматривают в зданиях в следующих случаях:

в рабочее время при отсутствии центральной системы приточной вентиляции, причем система отопления может быть чисто отопительной и совмещенной с местной приточной вентиляцией;

в нерабочее время при отсутствии и невозможности или экономической нецелесообразности использования для отопления имеющейся центральной системы приточной вентиляции.

Для местного воздушного отопления применяют:

1) рециркуляционные отопительные агрегаты с механическим побуждением движения воздуха (рис. 10.1, я);

2) отопительно-вентиляционные агрегаты с частичной рециркуляцией воздуха и прямоточные, также с механическим побуждением движения воздуха по схемам на

рис. 10.1, в, г (рассматриваются главным образом в дисциплине «Вентиляция»);

3) рециркуляционные воздухонагреватели с естественным движением воздуха (рис. 10.1, б).

Отопительные агрегаты предназначены для отопления производственных помещений категорий В, Г и Д, технологический процесс в которых не сопровождается выделением пыли, крупных помещений общественных и сельскохозяйственных зданий. Специальные отопительно-вентиляционные агрегаты применяют для отопления жилых квартир. Рециркуляционные воздухонагреватели служат для отопления лестничных клеток многоэтажных зданий и отдельных помещений общественных зданий.

Отопительные агрегаты

Отопительным агрегатом называется комплекс стандарт­ных элементов, собираемых воедино на заводе, имеющий определенную воздушную, тепловую и электрическую мощность. Агрегаты изготовляют для установки непосредственно в отапливаемых помещениях. Они представляют собой компактное, мощное и сравнительно недорогое оборудование. Недостатком агрегатов является шум при действии вентилятора, что ограничивает возможность их применения в рабочее время.

Отопительные агрегаты подразделяются на подвесные и напольные. Подвесной отопительный агрегат представлен на рис. 10.3. Корпус, имеющий воздухозаборное отверстие, соединен с воздухонагревателем (калорифером). Внутри корпуса находится осевой вентилятор с электродвигателем.

Воздух, забираемый из помещения вентилятором, пропускается через калорифер, нагреваемый высокотемпературной водой, и выпускается снова в помещение в нужном направлении через створки регулирующего многостворчатого клапана. Агрегат снабжен кронштейнами для подвески его в помещении.

В зависимости от модели один подвесной отопительный агрегат при небольшой электрической мощности двигателя может нагревать до 20 тыс. м3/ч воздуха, тепловая мощность достигает 250 кВт. На рис. 10.3 изображен отопительный агрегат модели АО2-4 тепловой мощностью 47,7 кВт; воздух нагревается в пластинчатом многоходовом калорифере

Рис. 10.3. Подвесной воздушно-рециркуляционный отопительный агрегат АО2-4 (боковой вид)

1 — корпус; 2 — воздухонагреватель; з — многостворчатый клапан; 4 — кронштейн; 5 — осевой вентилятор; 6 — электродвигатель

Рис. 10.4. Напольный воздушно-рециркуляционный агрегат СТД-ЗООМ

I — электродвигатель; 2 — воздуховы-пускной патрубок; 3 — воздухонагреватель; 4 — корпус; 5 — ременная передача в защитном кожухе

Рис. 10.5. Схемы наклонной (а) и сосредоточенной (б) подачи нагретого воздуха отопительным агрегатом, установленным на высоте ft

А — расчетная точка в рабочей зоне; В — вершина воздушной cтруи марки КВБ-7п. Агрегат рассчитан на подачу 4000 м3/ч (индекс «4») воздуха при температуре 51 °С, если температура входящего в него воздуха 16 °С. В агрегате установлен осевой вентилятор типа 06-300 с электродвигателем 0,37 кВт.

Скорость воздуха на выходе из агрегата 4,4 м/с. Гидравлическое сопротивление калорифера (по теплоносителю) 2207 Па.

Подобным же образом характеризуется каждый из остальных трех моделей (индексы 6,3; 10; 20) выпускаемых подвесных отопительных агрегатов А02. Большей дальнобойностью обладают агрегаты типа АОД2 с обводным воздушным каналом над калорифером. Общим недостатком агрегатов А02 является высокий уровень звуковой мощности (88 дБ А).

Подвесной отопительный агрегат другой модели СТД-ЗООп тепловой мощностью 349 кВт, рассчитанный на подачу 24600 м3/ч нагретого до 60 °С воздуха, отличается повышенной до 10,2 м/с скоростью выпуска воздуха.

В напольных отопительных агрегатах используют не только осевые, но и центробежные вентиляторы (рис. 10.4); их мощность может превышать мощность подвесных агрегатов. Воздух нагревается не только водой, но и паром, а также при сжигании газообразного топлива. Схема напольного газовоздушного отопительного агрегата тепловой мощностью 9,65 кВт изображена на рис. 1.3.

Для отопления помещения устанавливают не менее двух агрегатов, причем их тепловую мощность выбирают достаточной для поддержания температуры не ниже 5 °С при выходе из строя одного из агрегатов.

При выпуске воздуха в свободное пространство крупного помещения через регулирующий многостворчатый клапан агрегата образуется так называемая компактная струя. Воздушная струя превращается в неполную веерную в том случае, когда регулирующий клапан дополняют рассеивающей решеткой.

Подачу нагретого воздуха при использовании отопительных агретатов осуществляют двумя способами: наклонными струями сверху в направлении рабочей зоны (рис. 10.5, а) или горизонтальными струями выше рабочей зоны (рис. 10.5, б). Наклонной подаче отдается предпочтение, так как нагретый воздух попадает непосредственно в рабо­чую зону. Для этого воздух выпускается под углом 35° к горизонту, что обеспечивает наибольшую дальнобойность нагретых струй.

Горизонтальную подачу, получившую название сосредоточенной, применяют, когда при наклонной подаче

 Центральное воздушное отопление

Центральное воздушное отопление применяют в помещениях производственных, гражданских и агропромыш­ленных зданий при наличии центральной системы приточной вентиляции. Отопление осуществляют по трем описанным выше схемам: с полной рециркуляцией (рис. 10.2, а), с частичной рециркуляцией (рис. 10.2, б) и прямоточной (рис. 10.2, в).

Полную рециркуляцию воздуха применяют главным образом в нерабочее время для дежурного отопления или для нагревания помещений перед началом работы при прерывистом отоплении. Так поступают, если полная рециркуляция не противоречит требованиям гигиены, пожаро-и взрывобезопасности помещений. При этом используется имеющаяся центральная система приточной вентиляции, но воздух забирается не снаружи, а из отапливаемых помещений и нагревается до температуры, определяемой по формуле (10.4).

В рабочее время центральное воздушное отопление подчиняется условиям вентилирования помещений. Приточный воздух нагревается до температуры более высокой, чем температура помещений в зависимости от теплопотреб-ности, выявленной при составлении теплового баланса этих помещений.

В системе центрального воздушного отопления используются все конструктивные элементы системы приточной вентиляции: фильтр, калориферы, электровентилятор, воздуховоды и пр. Тепловая мощность калориферов в совме­щенной системе отопления и вентиляции повышается на величину тепловой мощности системы отопления. Другим отличием является установка резервного вентилятора, электродвигатель которого должен автоматически вклю­чаться при остановке основного вентилятора.

Если для крупного помещения предусмотрено несколько совмещенных систем отопления и вентиляции, то резервные вентиляторы не устанавливаются, а головные участки воздуховодов отдельных систем соединяются перемыч­ками — перепускными воздуховодами с нормально закрытыми клапанами. Тепловая мощность таких систем подби­рается в расчете на поддержание в помещении режима дежурного отопления при выходе одной из них из строя.

Нагретый воздух может подаваться в обогреваемые по­мещения одной или несколькими горизонтальными струями, т. е. уже известным способом сосредоточенной подачи. В высокие помещения (высотой Нп более 8 м) воздух выпускается через воздухораспределительные устройства, размещаемые в средней зоне [(0,35-=-0,65)Яп] на высоте от поверхности пола, определяемой по формуле (10.20). Пре­дельное значение начальной температуры струи нагретого воздуха вычисляется по формуле (10.19).

Нагретый воздух может также подаваться вертикально сверху вниз. Начальную температуру воздуха tr, °C, для обеспечения такой подачи принимают не более получаемой по формуле

где т и п — скоростной и температурный коэффициенты воздушной струи, зависящие от конструкции воздухораспределительного устройства.

В помещениях при такой подаче образуются так называемые ненастилающиеся воздушные струи.

В случаях, когда нагретый воздух выпускается под потолком помещений (/1>0,85ЯП), например в относительно низких помещениях (при высоте Яп менее 8 м), воздушные струи становятся настилающимися

Настилающиеся воздушные струи получаются также при подаче нагретого воздуха снизу вдоль вертикальных наружных ограждений, особенно вдоль стекла световых проемов. Так поступают в холодных районах нашей страны, если рабочие места людей расположены близ этих проемов.,

Рис. 10.13. Центральное воздушное отопление помещения с подачей нагретого воздуха через подпотолочный (а) и напольный (б) щелевой воздухораспределитель

1 — воздухораспределитель; 2 — граница настилающейся воздушной струи; 3 — граница рабочей зоны; 4 - наружное ограждение

 

 


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.033 с.