Ограничения на длины кабелей и шнуров СКС — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Ограничения на длины кабелей и шнуров СКС

2020-11-19 224
Ограничения на длины кабелей и шнуров СКС 0.00 из 5.00 0 оценок
Заказать работу

Стандарты ISO/IEC 11801 в редакции 2000 года (в настоящий момент последняя редакция стандарта 2010 год) и TIA/EIA 568-А устанавливают ограничения на максимальные длины кабелей и соединительных шнуров горизонтальной и магистральных подсистем. Длины кабелей указаны на рис 1.5 и приведены в табл. 1.4. являются рекомендуемыми по стандарту.

 

Таблица 1.4. Максимальные длины кабельных трактов в зависимости от типа кабеля и класса приложения

Среда передачи сигнала

Класс приложений

A B C D Оптика Симметричный кабель категории 3 2 км 200 м 100 м* - - Симметричный кабель категории 4 3 км 260 м 150 м - - Симметричный кабель категории 5 3 км 260 м 160 м 100 м - Симметричный кабель 150 Ом 3 км 400 м 250 м 150 м - Многомодовый оптический кабель - - -   2 км Одномодовый оптический кабель - - -   3 км**

* Под длиной 100 м поднимается суммарная длина горизонтального кабеля (до 90м) и шнуров всех разновидностей)

** 3 км - ограничение формально наложенное стандартном 0 не является физическим ограничением.

А+B+C ≤ 9 м - суммарная длина всех шнуров и перемычек горизонтальной подсистемы А+E ≤ 10 м

 

С и D ≤ 20 м - длина коммутационных шнуров (перемычек) в КЗ и КВМ F и G ≤ 30 м - длина оконечных шнуров в КЗ и КВМ

Рисунок 1.5. Максимальное расстояние в СКС по ISO/IEC 11801

Наибольшая длина кабеля горизонтальной подсистемы установлена равной 90 м. Стандартизация именно этого значения произведена исходя из возможностей витой пары как направляющей системы электромагнитных колебаний передавать сигналы наиболее массовых высокоскоростных приложений типа Fast Ethernet. Учитывались достигнутый технический уровень элементной базы и применяемые схемотехнические решения приемопередатчиков современного сетевого оборудования. Не последнюю роль при


выборе именно этого значения максимальной длины играли архитектурные особенности типовых офисных зданий.

В случае реализации горизонтальной проводки на волоконно-оптическом кабеле длина кабельного тракта ограничена величиной 90 м. В этом случае основным соображением были не энергетические характеристики оптоэлектронной элементной базы современных волоконно-оптических приемопередатчиков, а то, что она гарантированно позволяет выполнить ограничения протокольного характера сетей Fast Ethernet по максимальному диаметру коллизионного домена.

Основным назначением подсистемы внутренних магистралей является объединение в единое целое технических помещений в пределах одного здания. Исходя из этого, максимальная длина кабеля такой магистрали устанавливается стандартами равной 500 м по международному стандарту ISO/IEC 11801:2000 и 300 м -по американскому стандарту TIA/EIA-568-B.l. Очень часто на практике кабели этой подсистемы соединяют технические помещения, которые расположены на разных этажах здания. На основании этого из-за ориентации кабеля ее называют вертикальной.

И наконец, подсистема внешних магистралей, которая объединяет отдельные здания, согласно стандарту ISO/IEC 1801 может включать в себя кабели максимальной длиной 1,5 км. Дополнительно оговаривается, что максимальная длина магистральных кабелей между кроссовой этажа и кроссовой внешних магистралей не может превышать 2000 м (500 м кабеля внутренней и 1500 м кабеля внешней магистрали) при условии применения коммутационных и оконечных шнуров стандартной длины. В случае использования одномодового кабеля указанное значение может быть увеличено до 3000 м при длине кабеля внешней магистрали 2500 м. Американский стандарт TIA/EIA-568-B.l устанавливает длины много-модового и одномодового кабелей подсистемы внешних магистралей в 1700 м и 2700 м соответственно. Таким образом, общая длина магистральных трактов независимо от стандарта составляет 2 и 3 км для многомодового и одномодового кабелей.

При необходимости обеспечения связи на большие расстояния стандартами предполагается, что для передачи информации будут использоваться линии и каналы связи общего пользования различных телекоммуникационных операторов.

Длины коммутационных и оконечных шнуров в определенной степени зависят от выбранной схемы подключения сетевого оборудования, типа среды передачи сигнала и подсистемы СКС, к которой относится данный конкретный шнур или их совокупность. Согласно стандарту ISO/IEC 11801 в редакции 2000 года максимальная суммарная длина кабелей шнуров, применяемых при организации трактов горизонтальной подсистемы, составляет:

ü 9 м - в случае схемы коммутационного подключения для электрического кабеля;

ü 10 м - в случае схемы коммутационного соединения для электрического кабеля;

ü •10м- при любой схеме подключения в волоконно-оптическом варианте.

Максимальная длина коммутационного шнура, используемого в кроссовых магистральных подсистем (КЗ и КВМ) согласно стандарту ISO/IEC 11801 составляет 20 м. Длина оконечных шнуров, предназначенных для подключения сетевого оборудования в этих технических помещениях, не должна превышать 30 м. При этом в магистральных подсистемах тип кабеля как среды передачи не влияет на величину максимальной длины шнуров, то есть она является одинаковой как для электрического, так и для волоконно- оптического кабеля.


1.3. Дополнительные варианты топологического построения СКС

Рассмотрим дополнительные возможности построения горизонтальной подсистемы и подсистемы внутренних магистралей, часть из которых не вошла в действующие основные стандарты по СКС. По состоянию на середину 2001 года они характеризовались только техническими бюллетенями TIA/EIA и содержались в проектах международного стандарта ISO/IEC 11801. Наличие этих вариантов существенно увеличивает свободу выбора проектировщика и позволяет значительно увеличить технико-экономическую эффективность кабельной системы в ряде часто встречающихся на практике случаев.

 

Варианты построения горизонтальной подсистемы СКС

Горизонтальная подсистема СКС, при реализации которой используются кабели из витых пар, может быть построена по четырем различным вариантам, которые в схематическом виде изображены на рис.1.6.

и и ц за ы м   ани те г с ор си ы под ант ой и ар ьн 6 нтал В . 1. зо сунок г и ор и Р
Наиболее распространена первая схема, которая образована непрерывным кабелем максимальной длиной 90 м, соединяющим розеточный модуль информационной розетки (ИР) и коммутационную панель в кроссовой этажа (КЭ).

Во втором варианте тракт передачи образуется последовательным соединением кабелей двух различных типов, но с эквивалентными передаточными характеристиками. Эти кабели соединяются между собой в так называемой точке перехода (ТП).

Согласно международному стандарту ISO/IEC 11801 здесь возможны две комбинации типов таких кабелей: многопарный + четы- рехпарный и круглый + плоский с одинаковым количеством пар (на практике это четыре пары). Американский стандарт TIA/EIA-568-A трактует точку перехода более узко: в ТП согласно этому нормативно-техническому документу происходит соединение плоского кабеля с круглым.

Точка перехода реализуется на обычном коммутационном оборудовании, которое отличается

от коммутационного оборудования технических помещений только видом конструктивного исполнения. Однако это оборудование запрещается использовать для выполнения операций администрирования кабельной системы и для подключения активных сетевых устройств любого назначения. В соответствии с этим в точке перехода никогда не должны применяться коммутационные и оконечные шнуры. Из определения точки перехода и требований к ней немедленно следует правило о том, что количество пар входящих и исходящих кабелей должно совпадать или отличаться не более чем на одну.

Последние два варианта построения горизонтальной подсистемы СКС ориентированы в первую очередь на применение в так называемых открытых офисах. Под этим объектом понимаются рабочие помещения большой площади, которые не имеют некапитальных стен вообще или разделены на отдельные секции специализированной


мебелью или легко демонтируемыми перегородками. Общим отличительным признаком таких офисов являются частые перемещения сотрудников и изменения составов рабочих групп, а также наличие явно выраженной зонной группировки отдельных рабочих мест.

В открытых офисах могут применяться многопользовательские телекоммуникационные розетки MUTOA (Multi-User Telecommunication Outlet Assembly) и консолидационные точки СР (consolidation point). Оба варианта были впервые нормированы техническим бюллетенем TSB-75, позднее решение на основе MUTOA в несколько иной форме с изменениями непринципиального характера было включено в новую редакцию американского стандарта TIA/EIA-568-B.l. Применение указанных объектов позволяет адаптировать рассмотренные выше решения на случай открытого офиса (см. табл. 1.5).

 

Таблица 1.5. Аналоги между различными вариантами организации горизонтальной подсистемы

Тип офиса Прямое соединение Многопользовательское соединение
Обычный офис Обычный "проброс" Точка перехода
Открытый офис Многопользовательская розетка Консолидационная розетка

Под многопользовательской розеткой MUTOA понимается розетка, которая обслуживает нескольких пользователей. В соответствии с этим максимальное количество розеточных модулей в розетке MUTOA может достигать 12. Такой элемент выделяется большинством производителей в конструктивно отдельный вид оборудования, которое устанавливается на колоннах и стенах здания, под фальшполом, в напольных коробках и достаточно редко - в пространстве между капитальным и подвесным потолками. Максимальная длина W оконечного шнура, соединяющего розетку MUTOA с сетевым оборудованием на рабочем месте, согласно TIA/EIA-568-B.l, пункт 6.4.1.4 зависит от диаметра проводника и конструктивного исполнения кабеля и вычисляется следующим образом:

𝑊 = 102 − 𝐻 м           формула 1.1.

1 + 𝐷

где H - длина горизонтального кабеля

Коэффициент D учитывает повышенное затухание сигнала в кабеле соединительного шнура с гибкими многопроволочными проводниками, а его значения приведены в табл. 1.6. График зависимости длины коммутационного шнура от длины горизонтального кабеля приведен на рис 1.7.

 

Таблица 1.6. Параметры коммутационных шнуров для розеток MUTOA

Диаметр проводника

Коэффициент D

Оконечный шнур Оконечный шнур + шнуры в техническом помещении

Максимальная длина, м

24 AWG 0,2 22 27 26AWG 0,5 17 21

Таким образом, суммарная длина оконечного и коммутационного шнуров с диаметром проводников 24 AWG в открытом офисе может достигать 27 м против 9-10 м в случае обычного офиса, что сопровождается заметным увеличением гибкости кабельной


системы. При этом за счет соответствующей корректировки длины горизонтального кабеля в сторону уменьшения максимальное суммарное затухание тракта передачи сигнала в обоих случаях оказывается одинаковым, что гарантирует сохранение заданных качественных показателей передаваемой информации.

     
 

Рисунок 1.7. Зависимость максимальной длины оконечного шнура от длины горизонтального кабеля для многопользовательской розетки MUTOA

Консолидационная точка (СР) в открытом офисе является прямым аналогом точки перехода традиционной топологии. От нее к отдельным розеткам рабочего места протягиваются короткие отрезки горизонтального кабеля, которые являются продолжением основного кабеля сегмента. Решения на основе СР рекомендуется применять в тех случаях, когда перемещения сотрудников возможны, но не столь часты, как в условиях применения розеток MUTOA.

Аналогично традиционной кабельной проводке в любой горизонтальной линии открытого офиса запрещается использование более одной точки перехода в виде розеток MUTOA и СР, а в консолидационной точке не допускается подключение активного оборудования и выполнение операций администрирования.

При использовании консолидационной точки стандарт TIA/EIA-568-B.l, пункт 6.4.2 не рекомендует располагать оборудование этих объектов ближе 15м от информационной розетки. Это мотивируется достаточно эффективным подавлением на таких длинах перекрестных помех и обратных отражений, возникающих за счет резонансных явлений (так называемая Short-link problem — проблема коротких линий).

 


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.023 с.