Основные свойства рентгеновского излучения и применение их на практике — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Основные свойства рентгеновского излучения и применение их на практике

2020-11-19 257
Основные свойства рентгеновского излучения и применение их на практике 0.00 из 5.00 0 оценок
Заказать работу

1. Рентгеновские лучи невидимы для визуального восприятия.

2. Рентгеновское излучение обладает большой проникающей способностью сквозь органы и ткани живого организма, а также плотные структуры неживой природы, не пропускающие лучи видимого света. проникают через среды различной плотности — картон, дерево, ткани организма животного и т. д. Проникающая способность рентгеновых лучей тем больше, чем короче длина волны и, следовательно, больше энергия квантов. Глубина проникновения рентгеновых лучей в ту или иную среду, или степень ослабления интенсивности рентгеновского излучения при прохождении через слой того или другого материала, зависит не только от коротковолновости или энергии квантов, но и от свойств материала: чем плотнее среда, тем больше в ней поглощаются рентгеновы лучи. Например, слой воды толщиной 35 см ослабляет интенсивность потока рентгеновых лучей, генерированных при напряжении 200 кв, в такой же степени, как слой железа 4,75 см или бетона толщиной 17,23 см;

 

3. Рентгеновские лучи вызывают свечение некоторых химических соединений, называемое флюоресценцией.

o Сульфиды цинка и кадмия флюоресцируют жёлто-зелёным цветом,

o Кристаллы вольфрамата кальция — фиолетово-голубым.

На этом свойстве основан принцип рентгенологического просвечивания (рентгеноскопии), а также принцип действия усиливающих экранов при рентгенографии.

4. Рентгеновские лучи обладают фотохимическим действием: разлагают соединения серебра с галогенами и вызывают почернение фотографических слоёв, формируя изображение на рентгеновском снимке.

Фотохимическое действие также лежит в основе фотодозиметрии: рентгеновская плёнка, встроенная в дозиметры, при прохождении через неё рентгеновского излучения меняет свой цвет, что позволяет установить величину дозы, полученную рентгенологом во время его систематического облучения при работе в рентгенкабинете.

5. Рентгеновские лучи передают свою энергию атомам и молекулам окружающей среды, через которую они проходят, проявляя ионизирующее действие. Например, при прохождении рентгеновских лучей через комнатный воздух происходит ионизация газов, в результате чего образуется озон и оксиды азота.

Ионизирующее свойство позволяет с помощью дозиметров определять количество и качество рентгеновских лучей.

6. Дифракция –рассеяние

7. Способность поглощяться

  8.Способность отражаться

9.

  10.. Рентгеновское излучение оказывает выраженное биологическое действие в облучённых органах и тканях: в небольших дозах стимулирует обмен веществ, в больших — может привести к развитию лучевых поражений, а также острой и хронической лучевой болезни. Биологическое свойство позволяет примененять рентгеновское излучение для лечения опухолевых и некоторых неопухолевых заболеваний.

 Процессы взаимодействия ионизирующих излучений с веществом клетки, в результате чего образуются ионизированные и возбужденные атомы и молекулы, являются первым этапом развития лучевого поражения. Ионизированные и возбужденные атомы и молекулы в течение 10-6 с взаимодействуют между собой и с различными молекулярными системами, давая начало химически активным центрам (свободные радикалы, ионы, ион-радикалы и др.). В этот же период возможно образование разрывов связей в молекулах за счет как непосредственного взаимодействия с иони-зирующим агентом, так и внутри- и межмолекулярной передачи энергии возбуждения.

В дальнейшем развиваются реакции химически активных веществ с различными биологическими структурами, при которых отмечаются как деструкция, так и образование новых, несвойственных облучаемому организму соединений.

Последующие этапы развития лучевого поражения проявляются в нарушении обмена веществ в биологических системах с изменением соответствующих функций. У высших организмов это протекает на фоне нейрогуморальной реакции на развитие нарушения.

Явления, происходящие на начальных, физико-химических этапах лучевого воздействия, принято называть первичными, или пусковыми, поскольку именно они определяют весь дальнейший ход развития лучевых поражений.

При облучении биологических объектов, содержащих воду, находящуюся частично в свободном состоянии, а частично входящую в состав органелл соответствующих биосистем, принято считать, что 50% поглощенной дозы в «средней» клетке приходится на воду, другие 50% - на ее органеллы и растворенные вещества. В соответствии с локализацией поглощенной энергии (в воде или в основном веществе) можно говорить о непрямом и прямом действии ионизирующего излучения.

При взаимодействии ионизирующего излучения с водой происходит выбивание электронов из молекул воды с образованием так называемых молекулярных ионов, несущих положительный и отрицательный заряды. Схематически этот процесс можно представить следующим образом:

Н2О - Н2О+ + е1, Н2О + е-1 - Н2О-.

Возникающие ионы воды, в свою очередь, распадаются с образованием ряда радикалов, которые взаимодействуют между собой:

Н2О+ - Н+ + ОН,

Н2О- - Н + ОН-,

Н + ОН - Н2О,

ОН + ОН - Н2О2, Н2О2 + ОН - Н2О + НО2.

Считается, что основной эффект лучевого воздействия обусловлен такими радикалами, как Н, ОН и особенно НО2 (гидропероксид). Последний радикал, обладающий высокой окислительной способностью, образуется при облучении воды в присутствии кислорода: Н + О2 = НО2. Выход этого радикала уменьшается пропорционально падению парциального давления кислорода. Этим объясняется кислородный эффект при облучении, проявляющийся в том, что при снижении концентрации кислорода в период облучения уменьшается эффект лучевого воздействия.

Дальнейшие этапы развития радиационного поражения молекулярных структур и наиболее радиочувствительных надмолекулярных образований сводятся к изменениям белков, липидов и углеводов.

Так, например, облучение белковых растворов приводит к конфигурационным изменениям белковой структуры, агрегации молекул за счет образования дисульфидных связей, деструкции, связанной с разрывом пептидных или углеводных связей. Все эти процессы наблюдаются при поглощении достаточно высоких доз - порядка сотен тысяч рад и более. При облучении целостного организма в первую очередь изменяется содержание свободных аминокислот в тканях.

Различные ферментные системы реагируют на облучение неодинаково. Активность одних ферментов после облучения возрастает, других понижается, третьих остается неизменной. Важно отметить, что при облучении организма происходят повреждение систем синтеза нуклеиновых кислот и стимуляция ферментных систем, деполяризующих эти макромолекулы.

Высокой чувствительностью обладают дезоксирибонуклеиновые комплексы (ДНК клеточного ядра в комплексе с щелочными белками, РНК и ферментами). Уже через несколько минут после облучения происходят высвобождение нуклеиновой кислоты из дезоксинуклеопротеида и одновременное накопление нуклеиновых кислот в цитоплазме облученных клеток. Предполагается, что в этом случае в первую очередь поражаются связи белок-белок и белок-ДНК.

Облучение простых сахаров значительными дозами приводит к их окислению и распаду, в результате чего образуются органические кислоты и формальдегид. Облучение растворов полисахаридов (например, крахмала) сопровождается значительным понижением их вязкости, появлением простых сахаров (глюкозы, мальтозы) и др.

При облучении целостного организма содержание гликогена снижается в скелетных мышцах, печени и ряде других тканей, как предполагают, в результате нейрогуморальной реакции на облучение. Кроме того, нарушаются процессы распада глюкозы и в первую очередь анаэробного гликолиза. Отмечаются изменения и в обмене высокополимерных полисахаридов - гиалуроновой кислоты и гепарина.

При действии ионизирующих излучений на липиды образуются перекиси, которым придают особо важное значение в развитии лучевого поражения.

При облучении организма снижаются содержание липидов и их перераспределение в различных тканях с повышением их уровня в печени и крови, что, по-видимому, связано с изменениями углеводного обмена. Наряду с некоторой стимуляцией синтеза липидов происходит также повышенная их окисляемость, в результате которой возникают перекиси. При этом образование перекисей обусловлено не столько прямым действием радиации, сколько результатом угнетения ряда антиоксидантов.

Необходимо также отметить, что в результате действия радиации обнаруживаются изменения в липопротеинах во внутриклеточных структурах, в частности в митохондриях и микросомах.

Повреждением биологически важных макромолекул далеко не полностью объясняется ионизирующее поражение клетки. Клетка - слаженная динамическая система биологически важных макромолекул, которые скомпонованы в субклеточных образованиях, выполняющих определенные физиологические функции. Поэтому эффект действия источников ионизирующих излучений можно понять, лишь приняв во внимание изменения, происходящие как в самих клеточных органеллах, так и во взаимоотношениях между ними.

Наиболее чувствительными к облучению органеллами клеток организма млекопитающих являются ядро и митохондрии. Повреждения этих структур наступают при малых дозах и проявляются в самые ранние сроки.

Так, при облучении митохондрий лимфатических клеток дозой 0,5 Гр и более процессы окислительного фосфорилирования угнетаются в ближайшие часы облучения. При этом обнаруживаются изменения физико-химических свойств нуклеопротеидных комплексов, в результате чего происходят количественные и качественные изменения ДНК и разобщается процесс синтеза ДНК- РНК-белок. В ядрах радиочувствительных клеток почти тотчас же после облучения угнетаются энергетические процессы, ионы натрия и калия выбрасываются в цитоплазму, нарушается нормальная функция мембран. Одновременно возможны разрывы хромосом, выявляемые в период клеточного деления, хромосомные аберрации и точковые мутации, в результате которых образуются белки, утратившие свою нормальную биологическую активность. Более выраженной радиочувствительностью, чем ядра, обладают митохондрии. Так, зна- чительные изменения в структуре митохондрий лимфатических клеток селезенки обнаруживаются уже через 1 ч после облучения дозой 1 Гр. Эти изменения проявляются набуханием митохондрий, деструкцией крист и просветлением матрикса. В ряде случаев отмечаются повреждения мембраны митохондрий, проявляющиеся прежде всего в резком угнетении процессов окислительного фосфорилирования. В чувствительных к излучению тканях это нарушение обнаруживается уже при дозах фотонного излучения 0,5-1 Гр.

Эффект воздействия ионизирующего излучения на клетку - результат комплексных взаимосвязанных и взаимообусловленных преобразований. По А.М. Кузину, радиационное поражение клетки осуществляется в три этапа.

На первом этапе излучение воздействует на сложные макромолекулярные образования, ионизируя и возбуждая их. Поглощенная энергия может мигрировать по макромолекулам, реализуясь в слабых местах. В белках, вероятно, это SН-группы, в ДНК - хромофорные группы тимина, в липидах - ненасыщенные связи. Указанный этап повреждения может быть назван физической стадией лучевого воздействия на клетку.

Второй этап - химические преобразования, соответствующие процессам взаимодействия радикалов белков, нуклеиновых кислот и липидов с водой, кислородом, радикалами воды и биомолекулами, а также возникновению органических перекисей, вызывающих быстро протекающие реакции окисления, которые приводят к появлению множества измененных молекул. В результате этого начальный эффект многократно усиливается.

Нарушения, наступающие в результате высвобождения ферментов из клеточных органелл и изменения их активности, соответствуют третьему этапу лучевого поражения клетки - биохими ческому. Высвободившиеся ферменты путем диффузии достигают любой органеллы клетки и легко проникают в нее благодаря увеличению проницаемости мембран. Под воздействием этих ферментов происходит распад высокомолекулярных компонентов клетки, в том числе нуклеиновых кислот и белков. Было бы неправильным особо выделять какое-то одно биохимическое нарушение, возникающее при этом, так как радиационный эффект отмечается в результате многих самых разнообразных повреждений тонко сбалансированного механизма биохимических реакций. Вместе с тем, рассматривая действие радиации на клетки, можно говорить о ведущих повреждениях, приводящих к нарушению той или иной функции. Так, нарушения процессов окислительного фосфорилирования связаны с повреждением структуры митохондрий. В то же время указанные нарушения могут возникать в результате повреждения лизосом и высвобождения из них гидролитических ферментов. Изменения в клеточном ядре способны приводить к синтезу ферментов с измененной или утраченной активностью и т.д. Действие ничтожно малых количеств поглощенной энергии оказывается для клетки губительным вследствие физического, химического и био-

химического усиления радиационного эффекта, и основную роль в развитии этого эффекта играет повреждение надмолекулярных структур, обладающих высокой радиочувствительностью.

В зависимости от количества этих структур в клетках в определенной степени изменяется и их радиочувствительность. Так, при удвоенном количестве ДНК в клетке при облучении повышается содержание части ДНК в неповрежденном виде. Поэтому диплоидные клетки более устойчивы, чем гаплоидные. Уменьшение числа митохондрий повышает степень поражения каждой из них, в результате чего радиочувствительность возрастает.

 

 Радиочувствительность клеток в значительной мере зависит от скорости протекающих в них обменных процессов. Клетки, для которых характерны интенсивно протекающие биосинтетические процессы, высокий уровень окислительного фосфорилирования и значительная скорость роста, обладают более высокой радиочувствительностью, чем клетки, пребывающие в стационарной фазе.

Наконец, следует подчеркнуть, что конечный эффект облучения является результатом не только первичного повреждения клеток, но и последующих процессов восстановления. Предполагается, что значительная часть первичных повреждений в клетке возникает в виде так называемых потенциальных повреждений, которые могут реализоваться в случае отсутствия восстановительных процессов. Реализации этих процессов способствуют процессы биосинтеза белков и нуклеиновых кислот. Пока реализации потенциальных повреждений не произошло, клетка может в них восстановиться. Такое восстановление, как предполагается, связано с ферментативными реакциями и обусловлено энергетическим обменом. Считается, что в основе этого явления лежит деятельность систем, которые в обычных условиях регулируют интенсивность естественного мутационного процесса.

Таковы современные взгляды на механизм развития поражения клетки, возникающего при действии ионизирующих излучений. Если принять в качестве критерия чувствительности к ионизирующему излучению морфологические изменения, то ткани клетки и органы человека по степени снижения чувствительности можно расположить в следующем порядке: гонады и красный костный мозг; толстая кишка, легкие и желудок; мочевой пузырь, молочная железа, печень, пищевод, щитовидная железа; кожа и клетки костных поверхностей; остальные органы и ткани.


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.023 с.