Шероховатости на стыке между открытиями вселенского масштаба и реакцией общества — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Шероховатости на стыке между открытиями вселенского масштаба и реакцией общества

2021-01-29 96
Шероховатости на стыке между открытиями вселенского масштаба и реакцией общества 0.00 из 5.00 0 оценок
Заказать работу

 

Глава тридцать четвертая

Мало ли что все говорят

 

Аристотель полагал, что хотя планеты движутся на фоне звезд, а постоянство в небесах и в атмосфере время от времени нарушают падучие звезды, кометы и затмения, сами звезды неподвижно закреплены на небосклоне, их положение не меняется, а центр всего движения во Вселенной – это Земля. Прошло 25 веков, и с нынешней просвещенной точки зрения мы лишь посмеиваемся над этими глупыми выдумками, однако идеи Аристотеля на самом деле – вполне законные, хотя и упрощенные, выводы из наблюдений за миром природы.

Аристотель делал и другие заявления. Говорил, например, что тяжелые предметы падают быстрее легких. Да и кто бы спорил? Ведь очевидно, что камни падают на землю быстрее, чем сухие листья. Однако на этом Аристотель не остановился и заявил, что тяжелые предметы падают быстрее легких пропорционально собственному весу, то есть тело весом в 10 килограммов будет падать в 10 раз быстрее, чем тело весом в 1 килограмм.

Аристотель глубоко заблуждался.

Чтобы проверить его, возьмите и бросьте одновременно с одной и той же высоты два камня – большой и маленький. В отличие от листьев, трепещущих на ветру, ни тот ни другой камень не особенно подвержены сопротивлению воздуха, и оба упадут на землю одновременно. Чтобы проделать такой эксперимент, не нужен грант Национального научного фонда. Аристотель мог проделать его и сам, но не стал. Впоследствии представления Аристотеля были включены в доктрину католической церкви. И поскольку церковь была необычайно влиятельна и сильна, идеи Аристотеля укоренились в умах рядовых представителей западного мира, которые слепо верили в них и слепо повторяли. Все не просто рассказывали друг другу откровенную неправду, но и игнорировали все, что происходило на их глазах, но не должно было считаться истиной.

Если речь идет об исследовании мира природы, хуже того, кто слепо верит, может быть только тот, кто все видит, но отрицает факты. В 1054 году одна звезда в созвездии Тельца ни с того ни с сего вспыхнула в миллион раз ярче обычного. Об этом написали китайские астрономы. И арабские астрономы тоже написали. Индейцы на территории современного юго‑запада США оставили каменные рельефы в память об этом чуде. Звезда пылала так ярко, что ее неделями напролет было прекрасно видно на небе даже днем, однако никто во всей Европе – ни одна живая душа! – ни слова об этом не написал. На самом деле яркая новая звезда на небесах была сверхновой, взорвавшейся далеко в космосе примерно на 7000 лет раньше, просто ее свет только‑только успел дойти до Земли. Конечно, в Европе царило мрачное Средневековье, так что нельзя требовать от тогдашних европейцев умения точно фиксировать данные, однако «дозволенные» космические события прилежно регистрировались. Например, в 1066 году, 12 лет спустя, в небе пронаблюдали комету, которая впоследствии получила название кометы Галлея, и подробно (вместе с огорошенными зеваками) запечатлели ее около 1100 года на фрагменте знаменитого гобелена из Байё. Впрочем, это скорее исключение. В Библии сказано, что звезды неподвижны и неизменны. Аристотель говорил, что звезды неподвижны и неизменны. Церковь со всем своим непревзойденным авторитетом объявила, что звезды неподвижны и неизменны. Все население Европы пало жертвой коллективного заблуждения, и это заблуждение оказалось сильнее, чем способность каждого отдельного европейца верить своим глазам.

Все мы во что‑то слепо верим: нельзя же проверять вообще все, что говорят нам окружающее. Когда я говорю вам, что у протона есть двойник‑античастица (антипротон), чтобы проверить мое утверждение, вам понадобится лабораторное оборудование стоимостью в миллиард долларов. Так что проще поверить мне на слово, сочтя, что в целом я знаю, что говорю, – по крайней мере, если речь идет об астрофизике. Если вы отнесетесь к моим заявлениям скептически, я не возражаю. Более того, я это всячески приветствую. Не стесняйтесь, отправляйтесь на ближайший ускоритель частиц, полюбуйтесь на антивещество сами. А как насчет всех утверждений, для проверки которых не нужны затейливые экспериментальные установки? Казалось бы, в нашей современной просвещенной культуре общественное мнение должно обладать надежным иммунитетом от всех тех ложных утверждений, которые легко проверить.

А вот и нет.

Вспомните следующие утверждения. Самая яркая звезда на ночном небе – Полярная. Солнце – желтая звезда. Все, что подбросишь, должно упасть. Темной ночью на небе видны невооруженным глазом миллионы звезд. В космосе нет гравитации. Компас указывает на север. Зимой дни становятся короче, а летом длиннее. Полные солнечные затмения случаются редко.

Все они до единого ложны.

Многие, а может быть, и большинство верят как минимум в одно из этих утверждений и распространяют их, несмотря на то, что непосредственно продемонстрировать их ошибочность совсем не сложно. Добро пожаловать на мой фестиваль опровержений под девизом «Мало ли что все говорят»!

Полярная звезда – не самая яркая на ночном небе. Яркости ей не хватает даже на то, чтобы занять сороковое место в небесных списках.

За яркость частенько принимают популярность. Если посмотреть в ночное северное небо, видно, что три из семи звезд Большой Медведицы, в том числе звезда, венчающая «ручку ковша», ярче Полярной звезды, которая находится оттуда всего в трех ладонях. Так что оправдания не принимаются.

И что бы вам ни твердили всю жизнь и кто бы это ни говорил, мне все равно: Солнце не желтое, а белое. Человеческое цветовосприятие – штука сложная, но если бы Солнце было желтое, как желтая электрическая лампочка, то все белое, например снег, отражало бы этот свет и казалось желтым, а уже давно доказано, что желтый снег бывает далеко не везде, а только возле пожарных гидрантов. Что заставляет говорить, будто Солнце желтое? Если посмотреть на Солнце в полдень, можно навредить глазам. Зато на закате, когда Солнце склоняется к горизонту, а атмосфера сильнее всего рассеивает голубой свет, яркость Солнца существенно снижается. Голубой свет из солнечного спектра теряется в сумеречном небе, и именно поэтому диск Солнца окрашивается в красно‑оранжево‑желтые тона. Все смотрят на закатное Солнце, окрашенное в искаженные оттенки, и закрепляют заблуждение.

Не все, что подброшено вверх, падает вниз. На поверхности Луны полно всякой всячины – в том числе мячики для гольфа, флаги и обломки луноходов и космических станций. Если никто не отправится туда и не заберет их, они никогда не вернутся на Землю. Никогда. Если хотите подняться вверх и не упасть вниз, нужно всего‑навсего двигаться со скоростью больше примерно 11 километров в секунду. Потом все равно придется замедлиться из‑за притяжения Земли, однако оно не сможет заставить вас повернуть назад и опуститься на Землю.

Каково бы ни было ваше зрение, видимость и местоположение на Земле, если зрачки у вас размером не с линзы бинокля, вы не различите на всем небе больше пяти‑шести тысяч из 100 миллиардов (или около того) звезд в нашей галактике Млечный Путь. Сами попробуйте как‑нибудь ночью. Все становится гораздо хуже, если выходит Луна. А если Луна еще и полная, она затмит все, кроме нескольких сотен самых ярких звезд.

Во время космической программы «Аполлон», когда одна из миссий была на пути к Луне, один известный телеведущий в программе новостей объявил, что‑де «в этот самый миг астронавты покинули гравитационное поле Земли». Поскольку астронавты еще не долетели до Луны, а Луна вращается по орбите вокруг Земли, следовательно, гравитация Земли должна простираться в космос по крайней мере до Луны. Более того, гравитация Земли, как и гравитация любого тела во Вселенной, распространяется бесконечно, хотя сила ее, безусловно, уменьшается. Каждая точка в космическом пространстве кишмя кишит бесчисленными гравитационными лямками по направлению ко всем прочим объектам во Вселенной. На самом деле ведущий хотел сказать, что астронавты миновали точку в пространстве, где сила гравитации Луны превосходит силу гравитации Земли. Вся мощнейшая трехступенчатая ракета «Сатурн‑V» для того и была предназначена, чтобы придать командному отсеку достаточную первоначальную скорость, позволяющую достичь именно этой точки, потому что дальше можно просто пассивно ускоряться в сторону Луны, что астронавты и сделали. Гравитация – она везде.

Все знают, что у магнитов противоположные полюса притягиваются, а одинаковые отталкиваются. Однако стрелка компаса сделана так, чтобы та ее половина, которая намагничена «по‑северному», указывала на северный магнитный полюс Земли. А намагниченный предмет может указывать своей северной половиной на северный магнитный полюс Земли тогда и только тогда, когда северный магнитный полюс Земли на самом деле на юге, а южный магнитный полюс на самом деле на севере. Более того, нет никакого такого универсального физического закона, который требовал бы, чтобы магнитные полюса совпадали с географическими. На Земле расстояние между ними составляет около 1500 километров, отчего, в частности, на севере Канады прокладывать курс по компасу, мягко говоря, глупо.

Поскольку первый день зимы – «самый короткий день в году», то зимой каждый следующий день должен быть все длиннее и длиннее. Аналогичным образом, поскольку первый день лета – «самый длинный день в году», то летом каждый следующий день должен становиться все короче и короче. Это прямо противоположно тому, что постоянно твердят все кругом.

В среднем каждые два года где‑то на поверхности Земли можно наблюдать, как Луна проходит прямо перед Солнцем, что вызывает полное солнечное затмение. Это происходит чаще, чем Олимпиада, однако в газетах почему‑то не пишут, что «В этом году произойдет редкое событие – Олимпийские игры». Должно быть, полное солнечное затмение считается редкостью, поскольку в каждой конкретной точке Земли его можно прождать добрые пятьсот лет. Это верно – однако не очень убедительно, поскольку на Земле есть области, например середина пустыни Сахары и практически вся Антарктида, где совершенно точно никогда не проведут Олимпиаду.

Хотите еще? В полдень Солнце стоит точно над головой. Солнце встает на востоке и заходит на западе. Луна выходит на небо ночью. В равноденствие день и ночь длятся ровно по 12 часов. Южный Крест – красивое созвездие. Все эти утверждения тоже ошибочны.

Нигде на территории материковой части США ни в какое время дня и даже года Солнце не поднимается точно в зенит. В истинный полдень прямые вертикальные предметы не отбрасывают тени. Наблюдать это на всем земном шаре могут лишь те, кто живет между 23,5 градусами южной широты и 23,5 градусами северной широты. И даже в этой зоне Солнце оказывается прямо над головой только дважды в год. Идея «Солнца в зените» – такое же коллективное заблуждение, как и яркость Полярной звезды и цвет Солнца.

Все жители Земли наблюдают восход Солнца точно на востоке и закат точно на Западе лишь дважды в год – в первый день весны и в первый день осени. Во все остальные дни все земляне видят, как Солнце восходит и заходит в других точках горизонта. На экваторе диапазон восходов насчитывает 47 градусов по восточному горизонту. На широте Нью‑Йорка (41 градус северной широты – это параллель Мадрида и Пекина) диапазон восходов насчитывает 60 градусов. На широте Лондона (51 градус северной широты) и вовсе 80 градусов. А с северного и южного полярных кругов можно наблюдать восход и точно на севере, и точно на юге – то есть диапазон восходов насчитывает полные 180 градусов.

Луна выходит и тогда, когда на небе есть Солнце. Если при наблюдении небосклона приложить небольшие дополнительные усилия – например смотреть вверх и при дневном свете, – то заметишь, что Луна видна и днем почти так же часто, как и ночью.

В равноденствие день и ночь не длятся ровно по 12 часов. Посмотрите на время восхода и заката в газете в первый день весны или осени. Эти моменты не делят сутки на два равных блока по 12 часов. День всегда побеждает. В зависимости от широты он выигрывает от всего семи минут на экваторе до почти получаса на северном и южном полярном кругах.

Кто в этом виноват? Рефракция солнечного света, который проходит из вакуума межпланетного пространства сквозь атмосферу Земли: это из‑за нее солнечный диск появляется из‑за горизонта на несколько минут раньше, чем восходит настоящее Солнце. И именно поэтому настоящее Солнце сядет на несколько минут раньше, чем солнечный диск, который вы увидите. По договоренности момент восхода отмечают по появлению над горизонтом верхнего края солнечного диска, а момент заката – по исчезновению верхнего края за горизонтом. Беда в том, что эти «верхние края» находятся на противоположных половинах диска, и поэтому при расчете времени восхода и заката получается, что день длится на диаметр солнечного диска дольше.

Южный Крест претендует на первое место по популярности среди всех 88 созвездий. Если послушать, что говорят об этом созвездии жители южного полушария и какие песни о нем слагают, а также посмотреть на флаги Австралии, Новой Зеландии, Западного Самоа и Папуа‑Новой Гвинеи, можно подумать, что мы, северяне, чем‑то обделены. А вот и нет. Во‑первых, чтобы полюбоваться Южным Крестом, не обязательно ехать в южное полушарие. Его прекрасно видно даже из Майами в штате Флорида – только низко над горизонтом. Это миниатюрное созвездие – самое маленькое на небе: его можно закрыть кулаком на вытянутой руке. Да и форма у него скучноватая. Чтобы нарисовать ромб методом «соедини точки», нужно четыре звезды. А чтобы сделать из него крест – добавить пятую по центру в месте пересечения перекладин. Но Южный Крест состоит всего из четырех звезд, и получившаяся фигура похожа скорее на воздушный змей или помятую картонную коробку. Западная культура унаследовала легенды о созвездиях во всей их пышности от вавилонян, халдеев, греков и римлян, живших столетия назад и наделенных богатым воображением. Не забывайте, что именно их богатое воображение породило мифы о совершенно асоциальном поведении богов и богинь. Все эти цивилизации, конечно, принадлежат северному полушарию, а следовательно, созвездия южного неба, многие из которых и названия‑то получили только в последние 250 лет, с мифологической точки зрения совершенно нищие. У нас, северян, есть свой Северный Крест, состоящий из всех пяти звезд, как положено нормальному кресту. Он входит в более крупное созвездие Лебедя, которое движется по небу вдоль Млечного Пути. Лебедь почти в двенадцать раз больше Южного Креста.

Когда люди верят в какое‑то предание, противоречащее объективным данным, проверить которые ничего не стоит, это подсказывает мне, что мы в целом недооцениваем роль объективных данных в построении системы внутренних представлений. Почему это так, непонятно, зато это позволяет многим придерживаться идей и представлений, которые основаны исключительно на предположениях. Однако надежда все же есть. Иногда люди изрекают истины, остающиеся истинами несмотря ни на что. В числе моих любимых – «Когда куда‑нибудь идешь, то все равно куда‑нибудь придешь» и его дзенское следствие «Если мы здесь, значит, мы точно не в каком‑то другом месте».

 

Глава тридцать пятая

Числофобия

 

Схему всей электропроводки в человеческом мозге мы, вероятно, не составим никогда. Однако одно несомненно: когда природа нас паяла, то не имела в виду, что мы будем мыслить логически. Иначе для среднего обывателя самым легким школьным предметом была бы математика. Более того, в такой альтернативной Вселенной математику в школах вообще не преподавали бы, поскольку ее постулаты и принципы были бы самоочевидны даже отстающим ученикам. Но в реальном мире все не так. Большинство людей можно, конечно, натренировать иногда включать логику, а кое‑кто вообще всегда рассуждает логически: в этом отношении мозг – весьма гибкий орган. Но ведь тренировать включать эмоции вообще не нужно. Мы плачем, когда рождаемся, и учимся смеяться уже в первые месяцы жизни.

А вот считать окружающие предметы мы начинаем отнюдь не сразу после выхода из материнской утробы. Скажем, известная всем числовая ось не прописана у нас в сером веществе. Человечеству пришлось ее изобретать и выводить из нее следствия по мере возникновения новых потребностей, поскольку жизнь и общество становились все сложнее. В мире исчислимых предметов никто не будет спорить, что 2 + 3 = 5, но чему равно 2 − 3? Чтобы ответить на этот вопрос, не утверждая, что «выражение не имеет смысла», нужно было, чтобы кто‑то изобрел новую часть числовой оси – отрицательные числа. Продолжим: все мы знаем, что половина от 10 – это 5, а чему равна половина от 5? Чтобы этот вопрос имел смысл, кто‑то должен был изобрести дроби, еще один класс чисел на числовой оси. По мере углубления в царство чисел были изобретены самые разные виды чисел – в числе прочих мнимые, иррациональные, трансцендентные и комплексные. У каждого из них свое, подчас уникальное применение для объяснения явлений физического мира, которые мы успели открыть с самой зари цивилизации.

Исследователи Вселенной появились одновременно с человечеством. Поскольку и я принадлежу к этой (второй) древнейшей профессии, то могу подтвердить, что мы приспособили все части числовой оси для анализа самых разных небесных явлений и вовсю их применяем. Кроме того, мы любим задействовать и самые маленькие, и самые большие числа всех мастей. Подобные умонастроения повлияли даже на обиходный жаргон. Если общество считает, что что‑то неизмеримо велико, например национальный долг, его сумму называют не биологической и не химической, а именно астрономической. Поэтому можно с полным правом утверждать, что астрономы чисел не боятся.

Итак, позади тысячи лет культуры. Какая же оценка стоит у общества по математике? А точнее, какую оценку мы поставим американцам, членам самой технически развитой культуры за всю историю человечества?

Начнем с самолетов. Не знаю, кто нумерует места в авиакомпании «Континентал Эрлайнз», но суеверен он прямо‑таки по‑средневековому: боится числа 13. Я часто летаю их самолетами и еще нигде не видел ряда номер 13. После двенадцатого сразу четырнадцатый, и все тут. А здания? В семидесяти процентах многоэтажных зданий на всем протяжении Бродвея на Манхэттене – почти пять километров – нет тринадцатого этажа. Я не проводил подробных статистических исследований в масштабе всей страны, однако по своему опыту – а я часто бывал в разных зданиях, – могу оценить, что больше чем в половине зданий та же картина. Если вам доводилось ездить в лифтах таких «суеверных» многоэтажных домов, вы наверняка отмечали, что после двенадцатого этажа там сразу идет четырнадцатый. Такова тенденция и в старых, и в новых зданиях. Иногда строения обуревает совесть, и они пытаются скрыть свои суеверия, и там делают две шахты лифта – одна ведет с первого по двенадцатый этаж, вторая – от четырнадцатого и вверх. В двадцатидвухэтажном многоквартирном доме в Бронксе, где я рос, было две отдельные шахты лифта – однако в нашем случае одна шахта обслуживала четные этажи, а другая – нечетные. В детстве для меня было величайшей загадкой, почему нечетный лифт с одиннадцатого этажа шел сразу на пятнадцатый, а четный – с двенадцатого на шестнадцатый. Очевидно, в моем доме нельзя было пропустить один нечетный этаж, не нарушив всю схему чета и нечета. Отсюда этот вопиющий идиотизм – пропустить не только тринадцатый, но еще и четырнадцатый этаж. Все это, разумеется, означало, что в доме было не двадцать два этажа, а только двадцать.

В другом здании, где были обширные подземные угодья, этажи ниже первого обозначались так: B, SB, P, LB и LL. Наверное, для того, чтобы в лифте было о чем подумать и никто не бездельничал. Между тем прямо‑таки напрашивается решение пронумеровать эти этажи отрицательными числами. Для непосвященных поясню: эти сокращения означают «Basement» – «подвал», «Sub‑Basement» – буквально «под‑подвал», «Parking» – «парковка», «Lower Basement» – «нижний подвал» и «Lower Level» – «нижний этаж». Нормальные этажи так косноязычно не нумеруют. Представьте себе пятиэтажное здание, этажи которого пронумерованы не цифрами 1, 2, 3, 4 и 5, а сокращениями СН, ВН, ЕВН, ПСВ и ПК, что значит «Самый нижний», «Выше нижнего», «Еще выше нижнего», «Почти самый верхний» и «Под крышей». В принципе, бояться отрицательных этажей не стоит, они есть, например, в «Отель де Рон» в Женеве, где есть этажи −1 и −2, и в гостинице «Националь» в Москве, где безо всяких колебаний пронумеровали этажи 0 и −1.

То, что американцы, очевидно, не желают замечать ничего, что меньше нуля, видно в самых разных областях жизни. Легкий случай подобного синдрома наблюдается у торговцев автомобилями: они говорят не «Мы вычтем 1000 долларов из цены автомобиля», а «Мы вернем вам 1000 долларов». Боязнь минуса в бухгалтерии распространена повсеместно. Здесь отрицательные числа заключают в скобки, чтобы нигде в ведомости не проскочил минус. Даже популярный роман Брета Истона Эллиса «Меньше нуля» (Bret Easton Ellis, «Less Than Zero»), вышедший в 1985 году, и его экранизация 1987 года, что характерно, ни в коем случае не могли быть названы логичным и точным синонимом «Отрицательная величина».

Мы прячемся не только от отрицательных чисел, но и от десятичных дробей, особенно американцы. Лишь недавно при торговле ценными бумагами на Нью‑Йоркской фондовой бирже отказались от неуклюжих дробей и стали писать десятичные доли долларов. Причем американская валюта основана на десятичной системе исчисления, однако думаем мы о ней иначе. Если что‑то стоит 2,50 доллара, мы скажем совершенно точно не «Два доллара и пять десятых», а «Два с половиной доллара» или «Два доллара и пятьдесят центов». Это мало чем отличается от цен в старой британской системе, не имевшей отношения к десятичному исчислению, когда надо было отдельно указывать количество фунтов, шиллингов и пенсов.

Когда моей дочери исполнился год и три месяца, я позволял себе извращенное удовольствие отвечать на вопрос о ее возрасте «1,25 года», а не, скажем, «Пятнадцать месяцев», как принято в Америке. На меня молча глядели, недоуменно нахмурившись, – точь‑в‑точь собаки, заслышавшие какой‑то высокий звук.

Страх десятичных дробей бесчинствует и в тех случаях, когда речь идет о вероятности. Когда говорят о шансах, стандартная формулировка – «что‑то к одному» или «один шанс на сколько‑то». Это интуитивно понятно: шансы против того, что девятый забег в Белмонте выиграет аутсайдер, равны 28 к 1. Шансы против фаворита – 2 к 1. А шансы против лошади, занимающей второе место после фаворита – уже 7 к 2. Почему же не сказать, как положено, «что‑то к 1»? Потому что тогда вместо шансов «7 к 2» получится «3,5 к 1», и десятично‑ущербные посетители ипподрома окажутся в неловком положении.

Наверное, вполне можно жить и без десятичных дробей, без некоторых этажей в высотных домах и с этажами, которые не нумеруют как положено, а обозначают буквами. Но есть и более серьезная сложность – неспособность человеческого ума сравнивать большие числа.

Если считать, называя одно число в секунду, понадобится почти 12 суток, чтобы досчитать до миллиона, и 32 года, чтобы досчитать до миллиарда. Чтобы досчитать до триллиона, нужно 32 000 лет, и именно столько прошло с тех пор, как люди нацарапали первые рисунки на стенах пещер.

Если положить в цепочку сто миллиардов (или около того) гамбургеров, которые продала сеть «Макдональдс», можно будет 230 раз опоясать Землю и еще хватит, чтобы достать от Земли до Луны и обратно.

На данный момент состояние Билла Гейтса вроде бы составляет 50 миллиардов долларов. Если каждый взрослый работающий американец, спеша на службу, нагнется подобрать монетку в четверть доллара, а десятицентовик – уже нет, то с точки зрения их относительного богатства это будет все равно что Билл Гейтс не обратит внимания на валяющиеся на улице 25 000 долларов.

Для астрофизика это тривиальные умственные упражнения, однако обычный человек о таком не задумывается. Но что же он при этом теряет?

Начиная с 1969 года мы запускали космические аппараты, определившие развитие астрофизики в последующие два с лишним десятилетия освоения Солнечной системы. Именно в ту эпоху прославились «Пионеры», «Вояджеры», «Викинги». А также космическая станция «Марс Обсервер», связь с которой была потеряна при ее входе в марсианскую атмосферу в 1993 году.

Каждый из этих космических аппаратов проектировался и строился много лет. Каждая экспедиция ставила перед собой смелые научные цели, планировала масштабные и глубокие исследования – и, как правило, стоила налогоплательщикам 1–2 миллиарда долларов. В 90‑е, в процессе смены руководства НАСА, появился новый класс космических аппаратов под девизом «быстрее, дешевле, лучше» – они стоили уже 100–200 миллионов долларов. В отличие от прежних космических аппаратов, их можно было проектировать и строить очень быстро, а перед каждой миссией ставили теперь более конкретные цели. В результате, само собой, получалось, что неудача космической экспедиции обходилась не так дорого и наносила не такой сильный ущерб развитию космической программы в целом.

Однако в 1999 году провалились сразу две такие экономичные экспедиции, что стоило налогоплательщикам около 250 миллионов долларов. Тем не менее реакция общественности была столь же возмущенной, как и после потери станции «Марс Обсервер», которая стоила миллиард. СМИ заявили, что 250 миллионов – это чудовищная, невообразимо огромная растрата и что в НАСА, возможно, какой‑то непорядок. В итоге было предпринято судебное расследование и прошли слушания в Конгрессе.

Я не хочу никого защищать, однако 250 миллионов – это лишь немногим больше бюджета не слишком удачного фильма Кевина Кестнера «Водный мир». Примерно столько стоят два дня пребывания на орбите космического шаттла. А потерянная космическая станция «Марс Обсервер» стоила почти в пять раз больше. Если бы не эти сравнения и не напоминание, что эти неудачи были прямо связаны с девизом «быстрее, дешевле, лучше», когда риск распределяется по множеству миссий, а не сконцентрирован в одной‑двух дорогостоящих, можно было бы подумать, что миллион долларов равен миллиарду долларов, а миллиард долларов равен триллиону долларов…

Никто не упомянул, что потеря 250 миллионов – это меньше чем по одному доллару с каждого американца. Не сомневаюсь, что примерно столько же денег валяется на улицах в виде мелких монет, за которыми занятому взрослому человеку недосуг нагнуться.

 

Глава тридцать шестая

К вопросу о тупиках

 

То ли все дело в необходимости привлечь и удержать читателя. То ли общественности очень нравится узнавать о тех редких случаях, когда ученый оказывается в тупике. Так или иначе, иные популяризаторы науки не могут написать статью о Вселенной, не упомянув о том, что кое‑кто из астрофизиков, с которыми они беседовали, «оказались в тупике» из‑за последних научных открытий.

Ученые в тупике так занимают журналистов, что в августе 1999 года передовица в «Нью‑Йорк Таймс» – которая могла бы стать первым сообщением в СМИ о великом научном открытии – повествовала лишь о космическом объекте с совершенно загадочным спектром (Wilford 1999). Ведущие астрофизики оказались в полной растерянности. Невзирая на высокое качество данных (наблюдения были сделаны на телескопе им. Кека на Гавайях – самом мощном на тот момент оптическом телескопе в мире), объект не удавалось причислить ни к одной известной разновидности планет, звезд или галактик. Представьте себе, что биолог расшифровал геном недавно открытого вида и при этом не может понять, животное это или растение. Из‑за этой фундаментальной ошибки, вызванной невежеством журналиста, в статье на 2000 слов не было ни анализа, ни выводов – ни намека на науку.

В конкретном случае вскоре оказалось, что объект наблюдений – странная, однако по сути не очень примечательная галактика, но это выяснилось уже после того, как перед миллионами читателей прошла целая череда самых известных астрофизиков, которые сказали «Понятия не имею, что это». Подобные методы подачи материала цветут пышным цветом и формируют у читателя катастрофически искаженное мнение о преобладающих в научном сообществе настроениях. Если бы журналисты говорили всю правду, то писали бы, что все астрофизики оказываются в тупике каждый день, и неважно, попадают их открытия в газеты или нет.

Ученые не имеют права утверждать, что работают на переднем крае науки, если они ни из‑за чего не оказываются в тупике. Тупики – двигатель открытий.

Легендарный физик XX века Ричард Фейнман скромно заметил, что формулировать физические законы – это как наблюдать за игрой в шахматы, не зная правил. Хуже того, писал он, не получается наблюдать все ходы по очереди. Можно лишь время от времени поглядывать, как дела на доске и что изменилось. А при этом, несмотря на колоссальные пробелы в знаниях, стоит задача вывести правила игры. Рано или поздно заметишь, что слоны остаются на клетках какого‑то одного цвета. Что пешки передвигаются не очень быстро. Что все фигуры боятся ферзя. Но вот игра близится к финалу, и остается всего несколько пешек. Представьте себе, что вы возвращаетесь к доске в очередной раз и обнаруживаете, что одна из пешек исчезла, а на ее месте возник ферзь, которого вроде бы недавно съели. Попробуйте‑ка понять, в чем тут дело! Большинство ученых согласятся, что законы Вселенной, как бы ни выглядели они в целом, несопоставимо сложнее шахматных правил и остаются для нас неисчерпаемым источником бесконечных тупиков.

 

* * *

 

Недавно я узнал, что астрофизики оказываются в тупике чаще некоторых других ученых. Казалось бы, напрашивается вывод, что астрофизики глупее ученых других пород, но я думаю, что мало кто воспримет подобное заявление всерьез. Я думаю, что астрофизические тупики объясняются тем, как поразительно огромен и сложен космос. С этой точки зрения у астрофизиков много общего с нейрофизиологами. Любой нейрофизиолог легко подтвердит, что о человеческом сознании мы не знаем гораздо больше, чем знаем. Вот почему из года в год публикуют столько популярных книг и о Вселенной, и о человеческом сознании: никто пока не разобрался, как там все устроено на самом деле. Можно позвать в этот клуб незнаек еще и метеорологов. В атмосфере Земли столько всего происходит, что просто удивительно, что метеорологам хотя бы иногда удается дать точный прогноз. Те, кто составляет прогноз погоды для вечернего выпуска новостей, – единственные репортеры, от которых ждут предсказания завтрашних событий. И они изо всех сил стараются не промахнуться, однако в самом лучшем случае способны лишь измерить степень попадания в тупик: «Вероятность дождя – 50 %».

Одно несомненно: чем больше времени проводишь во всякого рода тупиках, тем шире становится мировоззрение и тем охотнее воспринимаешь новое. Это я знаю не понаслышке.

Однажды я выступал в телепередаче Чарли Роуза на канале «Пи‑Би‑Эс» и участвовал в дебатах с известным биологом: мы должны были обсудить и оценить, насколько вероятно, что некоторые соединения, обнаруженные в трещинках марсианского метеорита ALH‑84001, свидетельствуют о существовании внеземной жизни. Этот межпланетный странник, размерами и формой вылитая картофелина, был выбит с поверхности Марса в результате падения высокоэнергичного метеорита – примерно то же самое происходит с просыпанными на покрывало чипсами, когда вам приходит в голову попрыгать на матрасе: их сбрасывает с кровати. Марсианский метеорит пространствовал в межпланетном пространстве десятки миллионов лет, рухнул в Антарктиде, примерно 10 000 лет пролежал погребенный во льду – и вот в 1984 году его наконец обнаружили.

В первоначальной научной статье Дэвида Мак‑Кея и его сотрудников, опубликованной в 1996 году, приводились самые разные косвенные данные. Каждый пункт в отдельности вполне можно было бы объяснить каким‑нибудь небиогенным процессом. Однако все вместе они убедительно свидетельствовали, что на Марсе когда‑то существовала жизнь. Одно из самых соблазнительных доказательств, которые приводил Мак‑Кей, была простая фотография этого камня, сделанная в микроскоп с высоким разрешением: на ней видно нечто крохотное и червеобразное, примерно в десять раз меньше самого мелкого из известных на Земле видов червей. Однако с научной точки зрения эти данные оказались несостоятельны. Меня подобные открытия всегда приводили в восторг – и до сих пор приводят. Однако выступавший вместе со мной биолог отнесся к этому доказательству скептически и аргументировал свою точку зрения. Повторив сентенцию Карла Сагана «Сенсационные открытия требуют сенсационных доказательств», он объявил, что червеобразная штучка не может быть живой, поскольку там нет никаких следов клеточных оболочек и потому что это существо должно быть гораздо меньше самых мелких известных живых организмов на Земле.

Что‑что, простите?!

Вроде бы речь у нас идет о марсианской жизни, а не о земной, которую мой собеседник привык изучать в своей лаборатории. Такой узколобости я себе и представить не мог. Правда, может быть, это я слишком уж широко смотрю на вещи. Ведь и правда – иной раз так раздвинешь границы мировоззрения, что порушатся самые опоры здравого смысла – и тут уж, чего доброго, уподобишься тем, кто безо всякого скептицизма верит в летающие тарелки и в инопланетян, похищающих людей. Неужели мой мозг настолько отличается от мозга этого известного биолога? Мы с ним оба учились сначала в университете, потом в аспирантуре. Защитили диссертации каждый в своей области и посвятили свою жизнь научным методам и инструментам.

Возможно, далеко ходить за ответом и не придется. Биологи и публично, и в общении между собой превозносят многообразие жизни на Земле – вот сколько возникло всевозможных разновидностей благодаря естественному отбору, вот как различаются между собой ДНК соседних видов. Однако в конечном итоге их признания никто не слышит, ведь они работают с одним‑единственным научным образцом – с жизнью на Земле.

 

* * *

 

Готов спорить почти на что угодно, что жизнь на другой планете, если она возникла и сформировалась независимо от земной, будет отличаться от всех видов живых существ на Земле гораздо сильнее, чем любые два земных вида – друг от друга. С другой стороны, объекты исследования, схемы классификации и выборки данных астрофизики черпают во всей Вселенной. По этой простой причине новые данные с завидной регулярностью заставляют астрофизиков «мыслить по‑новому» и «выходить за рамки». Иногда выходить за рамки мы вынуждены буквально всем телом.

За примерами можно обратиться к древности, однако обойдемся без этого. Нам вполне сгодится и XX век. К тому же многие примеры мы уже обсуждали.

Стоило нам решить, что мы вправе считать Вселенную часовым механизмом и почивать на лаврах, сформулировав свод детерминистских законов классической физики, как Макс Планк, Вернер Гейзенберг и прочие взяли и открыли квантовую механику – и доказали, что на самых микроскопических масштабах Вселенная от рождения недетерминирована – пусть даже на более крупных масштабах она подчиняется детерминизму.

Стоило нам решить, что все звезды на ночном небе – это и есть Вселенная, как Эдвин Хаббл взял и открыл, что пушистые спиральные штучки в небе – это далекие галактики. Самые настоящие «островные Вселенные», дрейфующие далеко‑далеко за звездами Млечного Пути.

Стоило нам решить, что мы разобрались в форме и размере нашей якобы вечной Вселенной, как Эдвин Хаббл взял и открыл, что Вселенная расширяется и что Вселенная галактик простирается дальше пределов, за которые не могут заглянуть даже самые мощные телескопы. В частности, из этого открытия следовало, что у Вселенной было начало: для предыдущих поколений ученых такое было немыслимо.

Стоило нам решить, что теории относительности Альберта Эйнштейна дадут нам


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.086 с.