Гений сражается с гравитацией и болезнью — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Гений сражается с гравитацией и болезнью

2021-01-29 99
Гений сражается с гравитацией и болезнью 0.00 из 5.00 0 оценок
Заказать работу

 

Стивен Хокинг – еще один блестящий ученый, взявшийся за тайну черных дыр. Его история настолько всем нам знакома, что мы практически перестали им восхищаться. Неуверенный в себе и посредственный ученик в детстве, он сумел окончить школу отличником, занимаясь не более часа в день в течение трех лет. В 21 год у Хокинга диагностировали боковой амиотрофический склероз – прогрессирующую мышечную атрофию – и отвели два года жизни, однако в 32 года он был избран в Королевское общество, а в 35 лет стал лукасовским профессором, возглавив кафедру математики в Кембридже, – когда‑то эту должность занимал Исаак Ньютон. Хокинг едва не умер от пневмонии в 1980‑е гг., в результате лишился способности говорить и приобрел механический голос, ставший культовым. Книга «Краткая история времени»[33] сделала его знаменитым и была продана в количестве более 10 млн экземпляров[34]. К моменту смерти в марте 2018 г. он пережил отпущенный ему когда‑то срок более чем на полвека (илл. 7).

Близкие к Хокингу люди описывали его как сложного в общении человека[35], но во всяком случае это был самый оригинальный и выдающийся физик со времен Эйнштейна[36]. В своей диссертации на соискание степени доктора философии Хокинг сосредоточился на теме, которую большинство физиков предпочитали избегать, – сингулярностях. Как мы видели, подразумевающаяся в центре черной дыры сингулярность заставила даже Эйнштейна усомниться в собственной теории. В математике сингулярность – ситуация, когда функция имеет бесконечное значение. И это обычное явление: математикам известно множество способов работы с бесконечными величинами. Однако в физике бесконечность – серьезная проблема. Например, теория, описывающая жидкости, предсказывает, что в некоторых условиях плотность жидкости становится бесконечной. Ситуация явно выходит за пределы физики, что указывает на недостатки в теории. Хокингу, впрочем, не казалось, что сингулярности свидетельствуют о проблеме с общей теорией относительности. Он начал сотрудничество с математиком из Оксфорда Роджером Пенроузом, занимавшимся радикальным обновлением инструментов для изучения свойств пространственно‑временного континуума.

 

 

В общей теории относительности пространственно‑временной континуум ведет себя странно, но это часть теории, а не признак роковой ошибки. Пространственно‑временной континуум имеет складки, разрывы, края, дыры, перегибы, является многосвязным и топологически сложным[37]. «Ландшафт» общей теории относительности существенно отличается от «ландшафта» ньютоновской гравитации, в основе которого лежит трехмерное пространство, повсеместно простое и линейное. Общая теория относительности включает возможность сингулярностей.

В этой теории имеется лишь два типа сингулярности пространственно‑временного континуума. Сингулярность может быть вызвана сжатием материи до достижения бесконечной плотности (как в черной дыре) или возникнуть, когда свет приходит из области пространства с бесконечной искривленностью и плотностью энергии (как при Большом взрыве). Первую можно сравнить с плоским продырявленным листом бумаги или с краем листа, вторая не имеет точной аналогии. Любая частица, движущаяся вдоль листа бумаги, просто исчезает, натолкнувшись на сингулярность. Хокинг и Пенроуз решили провести общее исследование. Они отказались от многочисленных допущений и доказали знаменитую серию теорем о сингулярности, продемонстрировав, что в общей теории относительности сингулярности неизбежны. Иными словами, это ее свойство, а не баг. Любая черная дыра должна иметь сингулярность массы, и любая расширяющаяся вселенная (такая, как наша) в обязательном порядке начинается с сингулярности энергии. В своей диссертации Хокинг использовал пример из космологии, что моментально подняло его на звездные высоты в тонких мирах теоретической физики[38].

Затем Хокинг перенес свое внимание на черные дыры. Вместе с двумя коллегами он предположил, что, как и все остальные объекты во Вселенной, черные дыры подчиняются законам термодинамики. К этому моменту – к середине 1960‑х гг. – было найдено полное решение в рамках общей теории относительности для вращающейся черной дыры вдобавок к предшествующему решению Шварцшильда для неподвижной черной дыры. В математике или физике решение – это набор значений переменных, удовлетворяющих условиям всех уравнений. Точные решения в общей теории относительности найти весьма сложно – за 100 лет их было найдено всего два!

Один из «законов» Хокинга для черных дыр гласил, что площадь их поверхности всегда увеличивается. Когда материя падает в черную дыру, площадь горизонта событий растет, а при слиянии двух черных дыр площадь возникающего горизонта событий оказывается больше суммы площадей горизонтов событий их обеих. Это вызвало новые споры, закончившиеся поразительным выводом.

В 1967 г. Джон Уилер предположил, что черные дыры – очень простые объекты, для описания которых достаточно массы и момента импульса[39]. Мастер броских наименований, он назвал идею «теоремой об отсутствии волос», подразумевая, что большинство физических тел имеют «волосы» – детали, которые их характеризуют. Яаков Бекенштейн, один из магистрантов Уилера, попробовал соединить теорию Уилера с хокинговским пониманием площади поверхности черной дыры. Бекенштейн заявил, что площадь поверхности черной дыры является мерой ее энтропии. В расхожем употреблении энтропия означает непорядок. В физике энтропия – показатель количества возможных способов реорганизации атомов или молекул физического тела без изменения его общих свойств.

Из теоремы «об отсутствии волос» следует, что у черных дыр нет энтропии, но, как указал Бекенштейн, ничто наблюдаемое в природе не свободно от действия второго закона термодинамики – энтропия всегда возрастает – и черные дыры не могут быть исключением[40]. Поскольку термодинамика – краеугольный камень физики, Хокинг принял аргумент Бекенштейна, но столкнулся с новой задачей. Если у черной дыры есть энтропия, то должна быть и температура. Если у нее есть температура, она должна излучать энергию. Но, если ничто не способно вырваться из черной дыры, как она может излучать энергию?

Предложенное Хокингом решение этого противоречия ошеломило мир теоретической физики. Он заявил, что черные дыры испаряются. Вот как это происходит. В классической физике космический вакуум пуст, но, согласно квантовой теории, в нем постоянно возникают и уничтожаются «виртуальные частицы». Они существуют ничтожно малые промежутки времени, разрешенные принципом неопределенности Гейзенберга. В нормальных условиях эти пары частиц и античастиц или пары фотонов исчезают, ни на что не влияя, однако вблизи горизонта событий черной дыры мощная гравитация может разъединить виртуальные пары. Одна часть падает в дыру, а другая улетает прочь и становится реальной – так черная дыра излучает энергию (илл. 8). Источником энергии, необходимой для создания реальной частицы, является гравитационное поле черной дыры, вследствие чего ее масса уменьшается. Шутливо опровергая знаменитую остроту Эйнштейна о квантовой механике «Бог не играет с Вселенной в кости», Хокинг заявил: «Бог не только играет в кости, но иногда бросает их туда, где их невозможно увидеть»[41].

 

 

Излучение Хокинга – спорная, но, безусловно, блестящая идея. Вскоре Хокинг был избран в члены Королевского общества. К сожалению, для остатка звезды солнечной массы эффекты излучения Хокинга крайне слабы – одной десятимиллионной кельвина слишком мало для астрономических измерений. Скорость испарения невероятно низка. Потребуется 1066 лет, чтобы черная дыра с такой же массой, как у Солнца, совершенно исчезла. Зато кульминация этого процесса впечатляет: с уменьшением массы увеличиваются температура и скорость испарения, и черные дыры исчезают на пике стремительно растущего излучения.

По мере изучения черные дыры представлялись все более странными объектами. Физики исследовали их свойства, подвергая сомнениям даже сам факт их существования. В 1935 г. Альберт Эйнштейн и Натан Розен предположили, что между двумя точками пространственно‑временного континуума могут существовать «мосты»[42]. Черная дыра может находиться на любом конце такого моста, который Джон Уилер окрестил «кротовой норой»[43]. Общая теория относительности также допускает существование областей пространства‑времени, в которые невозможно проникнуть извне, но откуда, однако, могут выходить свет и материя. Это так называемые белые дыры. Область черной дыры будущего может иметь область белой дыры в качестве своего прошлого. Ученые не наблюдали за кротовыми норами и белыми дырами, но, по замечанию Стивена Вайнберга «в физике так часто бывает – нашей ошибкой является не чрезмерно серьезное, а недостаточно серьезное отношение к собственным теориям»[44].

В массовой культуре черные дыры стали символом смерти и разрушения. Однако в них заключена и надежда на трансформацию и вечную жизнь, поскольку на горизонте событий время застывает и никто не знает, что находится внутри. Романист Мартин Эмис писал: «Хокинг понимал черные дыры, потому что мог вглядываться в них. Черные дыры означают забвение. Смерть. Хокинг вглядывался в смерть всю свою взрослую жизнь»[45].

 

Пари о черных дырах

 

Со Стивеном Хокингом было выгодно держать пари – чаще всего он проигрывал[46]. Его первый спор касался гипотезы космической цензуры. В 1969 г. Роджер Пенроуз предположил, что сингулярности всегда «спрятаны» за горизонтом событий. За исключением Большого взрыва, голых сингулярностей не существует. Горизонт событий не даст наблюдателю увидеть материю, сдавленную до бесконечной плотности. Сингулярность оборачивается серьезными концептуальными проблемами для общей теории относительности, и потому физики надеялись, что черные дыры всегда имеют горизонт событий. В 1991 г. Хокинг поспорил на $100 с двумя физиками‑теоретиками из Калтеха – Джоном Прескиллом и Кипом Торном, утверждая, что гипотеза космической цензуры верна и голых сингулярностей не существует. В 1997 г. моделирование на суперкомпьютере показало, что при определенных условиях коллапс черной дыры может привести к голой сингулярности, которая создана природой или, возможно, высокоразвитой цивилизацией. Хокинг признал свое поражение, выплатил проигрыш и подарил двум своим коллегам футболки с надписью: «Природа не выносит сингулярности».

В том же году Хокинг побился об заклад с Прескиллом, заявив, что информация в черной дыре уничтожается (на сей раз Торн занял его сторону). «Информация» в этом контексте связана с энтропией. Высокая энтропия означает беспорядок и малый объем информации. Например, нормальный газ сильно разупорядочен, и для его описания достаточно считаных единиц информации: плотность, температура и химический состав. Черные дыры обладают громадной энтропией, существенно превышающей формирующие их газовые шары, и, соответственно, описываются даже меньшим числом единиц, чем газ: нам известны только их масса и осевое вращение[47]. В принципе, черную дыру можно создать бесконечно разными способами – например, сжатием газа и каменной породы или даже книг и непарных носков, – но невозможно увидеть информацию извне. Затем черная дыра испаряется, выделяя неупорядоченное излучение. Что происходит с информацией – в первую очередь о том, из чего сделана черная дыра? Этот вопрос получил название информационного парадокса.

В 2004 г. Хокинг проиграл и это пари. На конференции в Дублине он пересмотрел свою позицию и сказал, что информация может пережить падение в черную дыру, хотя и в искаженном виде, – как если бы сгорела энциклопедия и мы бы нашли ничтожные остатки содержавшейся в ней информации среди дыма и пепла. Возможно, новейшие технологии позволят восстановить типографскую краску и текст. Хокинг оставил положения квантовой механики, но отказался от предшествующего рассуждения, согласно которому информация может не только сохраняться внутри черной дыры, но и переходить в другие вселенные, ответвляющиеся от черной дыры. Он сказал The New York Times: «Жаль разочаровывать поклонников научной фантастики, но даже если информация сохраняется, невозможно использовать черные дыры для путешествий в другие вселенные»[48]. Хокинг ссылался на предложенную в космологии идею о том, что состояние, предшествовавшее Большому взрыву, могло породить множественные вселенные. Ученый добавил, что черные дыры могут служить путями перемещения информации между вселенными. Выполняя условия пари, Хокинг вручил своему другу Прескиллу энциклопедию бейсбола, из которой «информацию можно восстановить без всякого труда», а первоначальное заявление о потере информации объявил своим «величайшим промахом»[49].

Я встречал Стивена Хокинга в конце 1970‑х гг., когда учился в магистратуре. В Лондоне он читал лекцию о черных дырах в честь своего назначения лукасовским профессором математики. Хокингу было 36 лет, он состоялся как блестящий физик. Он уже десять лет сидел в инвалидном кресле, его речь настолько ухудшилась, что его понимали лишь немногочисленные члены семьи и близкие коллеги. Один из студентов, стоя вплотную к Хокингу, разбирал его слова и передавал аудитории. Помню, что к концу лекции проникся глубочайшим убеждением, что, какие бы препятствия ни встретились мне в жизни и в карьере, все это будет ничто по сравнению с тем, что испытывал Хокинг.

Двадцать лет спустя мы с двоюродным братом посетили публичную лекцию Хокинга в Кембридже. Текст лекции был подготовлен заранее и озвучивался синтезатором речи – это стало визитной карточкой Хокинга. Он отвечал на вопросы медленно, так как ему приходилось одним пальцем выбирать нужные фразы из огромной компьютерной базы. Но колкий юмор ученого проявился сполна. Кто‑то спросил: «Мы когда‑нибудь сможем использовать черные дыры, чтобы спасти человечество от уничтожения?» Помедлив, Хокинг напечатал: «Надеюсь, нет». Другой вопрос: «Может ли кто‑нибудь выжить, падая в черную дыру?» Он медленно набрал ответ: «Вы – может быть. У меня и без того достаточно проблем».

В действительности ответ на второй вопрос заключается в том, что, к сожалению, падающий в черную дыру путешественник не выживет, его ждет «спагеттификация» под действием силы растяжения вследствие гравитации. Гравитация слабеет обратно пропорционально квадрату расстояния до объекта. Для любого компактного объекта – такого как черная дыра – разница между гравитацией, действующей на две точки на разных расстояниях от этого объекта, может быть большой – это так называемая приливная сила[50]. На расстоянии 3000 км сила растяжения создаст между вашими головой и стопами ускорение, примерно равное гравитации Земли. Приятного мало, но вы выживете. На расстоянии 1000 км сила растяжения в 50 раз превысит земную гравитацию и разорвет на части ваши кости и внутренние органы. В 300 км – все еще далеко от горизонта событий – сила растяжения в 1000 раз превысит гравитацию Земли, твердые тела разрушатся. Спагеттификация – не детская игра, в которой один тянет вас за ноги, а другой – за руки, и даже не средневековая пытка дыбой. Пространственно‑временной континуум возле черной дыры искривляется, и вас растягивает на всех уровнях: мышечных волокон, клеток и спирали ДНК.

Возникает парадокс. Горизонт событий – это точка невозврата, информационная мембрана: информация проникает внутрь, но не наружу. Если бы вы могли нырнуть в черную дыру с цифровыми часами и каким‑то образом избежать спагеттификации, вам показалось бы, что часы продолжают нормально идти, пока вы в свободном падении погружаетесь в горизонт событий. Тем временем ваш компаньон, наблюдающий за падением, увидит, что часы замедляются, а ваша деформированная фигура медленно приближается к горизонту событий – до тех пор, пока вы не остановитесь вместе с часами. Теперь представьте, как мы бросаем в черную дыру книгу. Согласно законам гравитации, книга пересечет горизонт событий и информация будет утрачена, но с точки зрения стороннего наблюдателя книга никогда не достигнет горизонта событий. Утрачивается ли информация или каким‑то образом «сохраняется» на горизонте событий?

Впрочем, Хокинг был рад проиграть одно пари – первое пари с Кипом Торном, заключенное в 1975 г. Хокинг оспорил существование черной дыры – это должно было его подстраховать. Он надеялся на проигрыш, но если бы выиграл, то, по его словам, утешился бы четырехлетней подпиской на британский сатирический журнал Private Eye. Как мы узнаем из следующей главы, источник высокоэнергетического излучения Лебедь Х‑1 оказался убедительным кандидатом в черные дыры, и в 1990 г. Хокинг признал свое поражение. В качестве выигрыша Торн получил годовую подписку на Penthouse [51].

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.