Вместо военного мундира – рабочий комбинезон — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Вместо военного мундира – рабочий комбинезон

2021-01-29 67
Вместо военного мундира – рабочий комбинезон 0.00 из 5.00 0 оценок
Заказать работу

 

Обнинск. Небольшой зеленый городок неподалеку от Москвы стал столицей мирной ядерной энергетики, Меккой для ученых и журналистов всего мира.

Когда смотришь на светлое трехэтажное, отнюдь не грандиозное здание (дом как дом, разве что с пристройкой и высокой трубой), трудно представить, что за скромным фасадом скрывается настоящее чудо техники. Что за холодными каменными стенами бьется горячее и доброе сердце укрощенного ядерного исполина, бьется денно и нощно без перебоев вот уже второе десятилетие.

Подумать только: уран‑235, который вспыхнул яростным, испепеляющим солнцем над Хиросимой, теперь мирно кипятит воду! Кипятит, превращает ее в пар, а тот обрушивается горячим потоком на лопатки турбин. И бежит по проводам ток, давая людям свет и тепло, а машинным мускулам – силу.

Изумительно слаженно, безукоризненно четко работают умные механизмы, пробуждая и одновременно сдерживая разрушительные ядерные страсти, чтобы их скрытая мощь устремлялась на благо, а не во зло человеку. Сегодня все это кажется чем‑то само собой разумеющимся, привычным, даже, пожалуй, изначально присущим природе покоренного атома – а как же иначе? И невольно забываешь, что атомный век начался с атомных бомб.

АЭС – не просто демилитаризованный урановый котел, с одинаковым успехом производящий килотонны или киловатты, ядерную взрывчатку или электроэнергию. Это первый опыт во всей мировой практике, и он потребовал принципиально новых решений, точного, продуманного до мелочей расчета.

«Можно ли обеспечить взрывобезопасность атомных электростанций? Можно ли разработать надежные защитные устройства, которые автоматически выключали бы неисправный реактор? Велика ли опасность для населения в случае аварии? – спрашивает Ральф Лэпп. И признается: – На эти вопросы не так‑то просто ответить».

Все эти задачи были успешно решены советскими учеными и инженерами – пошел уже четырнадцатый год безаварийной, безопасной, безупречной службы первой АЭС. Наше правительство высоко оценило заслуги ее создателей.

Однако Лэпп называет и другую проблему – экономическую.

Да, капиталовложения на единицу мощности атомных электростанций пока несколько выше, чем угольных, киловатт‑час обходится дороже. Пока.

Но будет ли так вечно? Вот что писал академик А. П. Александров в 1962 году: «Электроэнергия на некоторых типах созданных или строящихся атомных станций будет дешевле, чем на аналогичных по мощности и расположенных в тех же районах тепловых».

Первая АЭС подтвердила правильность принципов, заложенных в ее конструкции, научила людей, как с ней обращаться, дала возможность провести множество исследований, которые легли в основу новых, более совершенных проектов, стали базой советской ядерной энергетики.

26 апреля 1964 года подключилась в Свердловскую энергосистему Белоярская АЭС имени И. В. Курчатова. Один только первый ее блок в 20 раз превосходит Обнинскую АЭС своей мощностью – 100 тысяч киловатт, а второй блок – в 40 раз. Себестоимость электроэнергии на нем на 40 процентов ниже, чем на первом. И лишь на 10–15 процентов выше, чем на ТЭЦ.

С каждой новой очередью совершеннее становятся установки БАЭС. А ведь именно Обнинская станция послужила прототипом для этого гиганта!

Хорошо освоены у нас и реакторы иного типа, где замедлителем нейтронов служит не графит, как на Обнинской и Белоярской АЭС, а вода. Такие «котлы» стоят и закладываются, например, на Нововоронежской АЭС, первая очередь которой пущена в 1964 году. Один из них обеспечивает трем турбогенераторам электрическую мощность 210 тысяч киловатт.

Другой рассчитан на 365 тысяч.

Сооружению этих мощных ядерных фабрик тепла и света предшествовали испытания трех небольших реакторов, проходившие в несколько необычной обстановке.

 

Лед и пламень

 

Еще недавно хмурилось небо, накрапывал дождик, ветер гнал свинцовую рябь по Неве, но в этот день погода установилась прямо‑таки праздничная. По реке величаво плыл громадный корабль – его тащили, пыхтя из всех сил, юркие буксиры. Корабль бросил якорь на том самом месте, где когда‑то «Аврора» дала сигнальный выстрел по Зимнему дворцу.

Легендарный трехтрубный крейсер теперь показался бы малышом по сравнению со своим рослым собратом.

Только величественное судно, ставшее в почетный двухдневный караул на историческом месте напротив Зимнего, не имело ни одной пушки. И еще одна деталь бросалась в глаза ленинградцам, а уж они‑то знают толк в морском деле. У обычного лайнера над кормовыми надстройками возвышаются огромные, в несколько обхватов, трубы. А здесь их не было.

И ленинградцы, конечно, знали, в чем дело: атомному ледоколу они ни к чему.

Полярный лайнер «Ленин» отчалил от пирса Адмиралтейского завода 12 сентября 1959 года – за два дня до прилунения космической ракеты с вымпелом СССР.

…Коротко арктическое лето. Каких‑нибудь два‑три месяца, и на Северном морском пути снова опускается ледовый шлагбаум. Выручают ледоколы.

Кромсая холодный голубой панцирь, ведут они караваны судов с промышленными грузами, товарами и продовольствием. Ведут неторопливо, запасы горючего надо экономить: ведь они истощаются гораздо быстрее, чем при плавании в открытой воде. Чего доброго, их может и не хватить, хотя трюмы набиты тысячами тонн угля или нефти. А могли бы быть заполнены тысячами тонн полезного груза.

Советскому атомоходу одной загрузки (по 80 килограммов урана‑235 в каждый реактор) хватает на 3 года (первую перезарядку провели весной 1963 года). Его энергетическая установка состоит из трех реакторов, по 90 000 киловатт каждый (правда, здесь имеется в виду уже не электрическая, а тепловая мощность, она всегда выше – у Нововоронежского реактора, например, она равна 760 000 киловатт). Два реактора работают, один – в резерве. Мощность двигателей – 44 000 лошадиных сил, рекордная для судов своего класса. Это вдвое выше, чем у американского ледокола «Глетчер», слывшего дотоле крупнейшим в мире.

Срок плавания по суровым северным морям продлился на два месяца.

Несколько цифр: водоизмещение атомохода – 16 000 тонн, длина – 134 метра, наибольшая ширина – 27,5 метра. Крейсерская скорость – 18 узлов (33 километра в час) на чистой воде и два узла – во льдах толщиной более двух метров. На корабле без малого тысяча помещений, среди них библиотека, кинозал, клуб, поликлиника, парикмахерская, баня, прачечная, хлебопекарня, камбуз, столовые, две электростанции, способные обеспечить энергией город с 300‑тысячным населением. Внутрисудовая связь осуществляется автоматической телефонной станцией на 100 номеров. Но главное, самое характерное, конечно, не это.

Сердце корабля – атомный двигатель. Он создан большим коллективом ученых и инженеров во главе с академиком Анатолием Петровичем Александровым.

Ядерному двигателю трубы не нужны. Ведь дыма без огня не бывает!

Хотя, впрочем, огонь все‑таки есть – своеобычный, внутриатомный. Незримый фейерверк ядерных вспышек, направляемый рукой человека, перед которым расступается мерзлая твердь океана.

Лед и пламень… Холодное равнодушие стихии и неугасимый накал разума – в этом извечном конфликте природа все чаще уступает человеку.

Было время – наш первобытный пращур с трудом высекал искры из кремня, чтобы кое‑как оградить себя от наступающих холодов и хищных зверей. Нынче у нас в руках атомное огниво, способное зажечь доброе электрическое солнце. Или испепеляющий термоядерный смерч…

Небоскребы и коттеджи построил человек XX века. Даже на кораблях – океанских, воздушных, космических – он создал домашний уют. Он уже не боится ни холода, ни хищников. Но его по временам тоже пробирает озноб. Ибо все еще дуют пронизывающие сквозняки «холодной войны». И тянутся хищные руки к смертоносному ядерному запалу.

Прячась от дневного света и людских глаз, шныряют в морских глубинах атомные субмарины, вооруженные ракетами с ядерной боеголовкой. Уж где, а тут американцы опять постарались взять пальму первенства. Но тщетно: Советский Союз давно уже обладает атомным ракетоносным подводным флотом, достаточно мощным, чтобы противостоять любому шантажу, любой агрессии. Наши моряки не раз по примеру жюль‑верновского капитана Немо совершали кругосветные путешествия под водой и проходили подо льдами Северного полюса, доказав полную надежность судовых атомных установок.

Кто же он все‑таки, этот новый Геркулес, – друг или враг? Неужели чудовищная сила раскованного атома призвана сеять смерть и разрушение? Разве не способна она своротить горы в грохоте созидательного труда?

Люди, построившие первую атомную станцию и первый атомный ледокол, доказали, что у атома другое будущее – светлое, мирное, большое. Все ярче разгораются по белу свету огоньки, подобные обнинским. Все энергичней впрягаются в работу лошадиные силы энергоустановок, подобных тем, что двигают атомоход «Ленин».

Вот уже около пятнадцати лет Советский Союз делится своим опытом с различными странами, поставляет им оборудование, приборы, расщепляющиеся материалы, помогает строить ядерные реакторы и создавать национальные исследовательские центры.

Такие мирные атомные городки возникли в Румынии, Чехословакии, Польше, Венгрии, Болгарии, ГДР, Югославии, Объединенной Арабской Республике.

Расширяя сотрудничество и связи в области мирного атома, наша страна заключила десятки межправительственных соглашений: с Афганистаном, Ганой, Ираком, Францией, Великобританией, Канадой, США, многими другими государствами.

Осенью 1955 года по решению Генеральной Ассамблеи ООН была созвана первая международная конференция по мирному использованию атомной энергии. Тогда работала одна‑единственная АЭС – советская. Ко времени, когда открылась вторая конференция (1958 год), действовали уже 4 станции (две у нас и по одной в США и Англии). А участники третьей конференции в 1964 году подвели такой итог: эксплуатируется и сооружается около 40 атомных станций, кроме того, построено более 500 всевозможных реакторов. Прикинули, что к 1970 году мощность всех АЭС достигнет 25 миллионов киловатт.

А к 1980 году – 150 миллионов, то есть будет примерно такой же, как у всех электростанций Европы, взятых вместе (без Советского Союза).

Семимильными шагами идет вперед ядерная энергетика. Советские специалисты приветствовали открытие первой американской АЭС в декабре 1957 года.

Они от души поздравляли заокеанских коллег, когда в 1962 году появилось атомное товаро‑пассажирское судно «Саванна».

Еще в апреле 1955 года Эйзенхауэр говорил:

«Корабль мира с ядерным двигателем продемонстрирует достижения американской культуры, науки и промышленности. Хотя мы строим суда с атомными двигателями для войны, мы намерены строить такие суда и для мира».

Увы, конгресс не утвердил тогда ассигнований на постройку мирного атомохода. Лишь через год, после утомительной дискуссии, средства, наконец, сыскались.

Но если ледокол «Ленин» в полном смысле атомоход, то «Саванна» отчасти дизель‑электроход: на ней используются и обычные источники энергии. «Нет только парусов», – шутил по этому поводу член‑корреспондент АН СССР В. С. Емельянов, посетивший осенью 1959 года Кемденскую верфь, где судно достраивалось.

«Реактор к этому времени был почти полностью смонтирован, а на пульте управления не хватало всего нескольких приборов, – рассказывает Василий Семенович. – И все же „Саванна“ не вышла в плавание ни в 1960, ни в 1961 году. Строительство судна было завершено к концу 1960 года, и начались предварительные испытания, во время которых стали обнаруживаться различные дефекты: течь в гидравлической системе регулирующих стержней, засорения фильтров, плохая термоизоляция труб паропроводов.

Только 4 апреля 1962 года механизмы судна были испытаны на полную мощность. После встречи с представителями прессы мы обедали со специалистами судостроительного завода. Был поднят тост за то, чтобы атомный ледокол „Ленин“ сломал лед „холодной войны“ и провел „Саванну“ на чистые воды».

Надо полагать, атомные установки на военных подлодках и авианосцах встречают куда более заботливое отношение со стороны американских конгрессменов и промышленников…

Как бы там ни было, мирный атомный флот родился и будет расти. В ФРГ заложено атомное грузовое торговое судно «Отто Ган». В Японии, Англии,

Франции, Италии, Норвегии, Швеции также ведутся работы по созданию кораблей с ядерными двигателями.

Теперь у нас накопился уже солидный опыт проектирования и эксплуатации реакторных установок для судов. И он важен не только для кораблестроения.

Как обнинская установка послужила основой для проектирования Белоярской АЭС, так и атомные котлы ледокола, хорошо зарекомендовавшие себя за многие годы безупречной службы, стали прототипом более мощных нововоронежских агрегатов. Реактор похожего типа сооружен на Мелекесской станции близ Ульяновска (ее мощность 50 000 киловатт). Там же действует исследовательский реактор с самым плотным в мире потоком нейтронов. Этот реактор очень высоко оценил американский ученый Г. Сиборг.

В нашей стране наряду с крупными АЭС строятся АЭС средней и малой мощности. Они призваны заменить не очень экономичные дизельные, паротурбинные и локомобильные энергоустановки в отдаленных, скажем, северо‑восточных районах (впрочем, они открывают перспективу освоения и таких необжитых мест, как Антарктида или даже Луна).

В 1963 году была пущена атомная блочная реакторная установка «АРБУС» мощностью 750 киловатт – оригинальная по конструкции и первая в своем роде. Здесь роль замедлителя и теплоносителя неплохо исполняет газойль – дизельное топливо. Побывав в реакторе, оно в отличие от воды почти не заражается наведенной радиоактивностью.

Так что наружная петля магистрали, по которой оно циркулирует, не требует сверхмощной защиты – надобность в толстых свинцовых или бетонных экранах отпадает.

Хорошо зарекомендовал себя и экспериментальный образец атомной электростанции ТЭС‑3 на 1500 киловатт.

 

Чтобы, умирая, возродиться

 

Быстрыми темпами прогрессирует ядерная энергетика. Но она вскрывает и новые трудности, ставит новые проблемы перед учеными.

Уран‑235 – единственное ядерное топливо естественного происхождения. Доля его в природном уране прискорбно мала – 0,715 процента (один атом из 150).

Мировые запасы урана‑235 обещают примерно миллиард миллиардов киловатт‑часов. Казалось бы, немало. Но это в 10 раз меньше, чем могут дать разведанные запасы обычных горючих ископаемых!

Выходит, ядерная энергетика, если она и впредь будет ориентироваться только на уран‑235, отнюдь не упразднит проблему энергетического голода.

Чего действительно много в земной коре, так это урана‑238. Беда в том, что он не в силах обеспечить самоподдерживающуюся цепную реакцию. Правда, из него получается отличное горючее – плутоний‑239.

На такому превращению подвергаются лишь два процента урана‑238, загруженного в обычный реактор.

Впрочем, мы забыли о тории! Этот элемент, как и уран‑238, сам гореть в ядерных топках не способен.

Однако под нейтронным обстрелом в реакторе он тоже превращается в горючее – в уран‑233. Так что у наших потомков есть еще один резерв.

И все же…

Человеку этого мало. Его неугомонный разум изыскивает все новые и новые возможности, таящиеся в недрах воистину неисчерпаемого атома.

В главе «Из искры – пламя» рассказывалось о физиках, которым на заре их научной деятельности приходилось кочегарить у «буржуйки» в нетопленной лаборатории. То‑то были бы озадачены, верно, эти юные «истопники», скажи им кто‑нибудь тогда, что в печке вместо одной начисто сгоревшей охапки дров каждый раз откуда ни возьмись сама собой должна появляться новая, возрождаясь из пепла, словно сказочная птица Феникс. Между тем нечто подобное и впрямь осуществимо, только не в химической, а в ядерной топке.

Вот уже восемь лет непрерывного трудового стажа насчитывает необычная атомная машина, созданная под руководством члена‑корреспондента АН УССР А. И. Лейпунского. Ее инициалы БР‑5 расшифровываются так: быстрый реактор тепловой мощностью 5 тысяч киловатт. От других «котлов», упоминавшихся здесь, он отличается отсутствием замедлителя.

В обычных установках на АЭС применяется вещество (графит, вода), тормозящее нейтроны, снижающее их энергию. Без замедлителя самоподдерживающийся процесс в бедной смеси заглохнет – слишком уж велика здесь жадная толпа атомов урана‑238, этих микрогаргантюа, заглатывающих нейтроны без последующего деления, то есть попросту обрывающих цепочку распадов. Чтобы реакция, несмотря на потери, все же пошла, нужно резко повысить содержание урана‑235, доведя его до десятков процентов против, к примеру, полутора (Нововоронежская АЭС) или 1,3 процента (Белоярская).

Конечно, облагораживание естественной изотопной смеси стоит немало. Но в атомных котлах без замедлителя количество топлива с течением времени не уменьшается, а, напротив, растет. Ведь ядро урана‑238, отправив в свое чрево нейтрон, превращается в конце концов в плутоний‑239 (отличное горючее!).

В итоге весь бездеятельный уран, загруженный в реактор, можно сделать энергетически активным, полезным.

Установка перейдет на полное самоснабжение да еще будет делиться своим непрерывно растущим капиталом с другими атомными станциями. Если теперь пересчитать ядерные энергоресурсы, они окажутся в десятки раз больше, чем химические – те, что заключены в органическом топливе планеты. Мало того, благодаря быстрым реакторам со временем будет выгодной добыча и переработка бедных урановых и ториевых руд.

У быстрых реакторов (их называют также размножителями) есть и другие преимущества.

Изучение новых перспектив, которые открыл перед энергетикой самовозрождающийся из пепла «ядерный Феникс», началось у нас еще в 1949 году. Шесть лет спустя был пущен первый советский реактор на быстрых нейтронах мощностью 50 ватт, в 1956 году – второй (100 киловатт), в 1958 году – третий (5000 киловатт).

Одновременно исследования в этом же направлении развернулись в Америке и в Западной Европе.

АЭС с быстрыми реакторами построены в США, Англии.

«Советская концепция развития ядерной энергетики, – подводил итог в своем отчете о III Международной женевской конференции А. М. Петросьянц, председатель Госкомитета по использованию атомной энергии, – предполагает более быстрый переход к созданию реакторов‑размножителей как генеральной линии ядерной энергетики, хотя для нас, конечно, ясно, что реакторы на быстрых нейтронах, являясь наиболее перспективным и многообещающим типом реакторов (имеются в виду промышленные масштабы), требуют еще большой творческой работы».

Глубокие исследования, проведенные в СССР над быстрыми нейтронами, позволили приступить к сооружению в районе Каспия промышленного реактора‑размножителя электрической мощностью 150 000 киловатт.

На этом фоне совсем неприметно выглядит цифра – от 12 до 45 киловатт. Такую мощность имеет установка «Ромашка», построенная под руководством академика М. Д. Миллионщикова в Институте атомной энергии имени И. В. Курчатова. Ее реактор тоже быстрый, только служит он уже не размножителем. Основная его функция, как и у большинства других его собратьев, – превращать тепло в ток. Но как превращать!

Законное изумление вызывает у нас изощренная смекалка конструкторов, придумавших массу хитроумнейших приспособлений, дабы энергию расщепленного атома передать потребителю в наиболее удобной форме – в виде электрического тока. Тут и тепло – носитель – вода, натрий, газойль. Тут и сеть коммуникаций, своей витиеватостью напоминающая кровеносную систему. Трубы, распираемые десятками атмосфер и обжигаемые сотнями градусов.

Перегреватели. Парогенераторы. Турбины. Электрогенераторы.

Да, сперва надо превратить атомный жар в упругий влажный ураган, затем поступательное движение пара – во вращение якоря с обмоткой, наконец, механическую энергию – в электрическую. Вот сколько пересадок на маршруте тепло – ток! Пока что нигде в мире не умеют делать иначе – по крайней мере в промышленных масштабах. Но будет ли так всегда?

14 августа 1964 года состоялся пуск, первого в мире реактора, трансформирующего ядерное тепло прямо в электрический ток. Поэтическое название цветка родилось неспроста: боковые выступы на цилиндрическом корпусе термоэлектрического преобразователя напомнили инженерам лепестки простой полевой ромашки.

«Ромашка» отапливается ураном‑235 – в изотопной смеси его доля составляет 90 процентов. Вес горючего – почти полцентнера.

Тепловой поток воспринимается кремний‑германиевыми термоэлементами. В них‑то и происходит волшебное превращение тепла в ток, прямое, без промежуточных ступеней. Горячие спаи полупроводниковых преобразователей нагреты до тысячи градусов. «Холодные» – до 600, хотя находятся совсем рядом. Этот температурный перепад, необходимый для эффективной работы кристаллических источников тока, достигается без сложной системы охлаждения.

Тепло отводится в окружающий воздух металлическими лепестками «Ромашки».

Преобразователи работают в очень напряженном режиме. Убийственная жара. Резкие температурные контрасты. Мощные потоки нейтронного излучения.

Выстоят ли в этой адской обстановке все узлы агрегата?

Советская инженерная мысль с честью выдержала ответственные испытания на зрелость.

Русское слово «Ромашка» замелькало на всех языках в строгих научных отчетах после того, как наши ученые на Международной конференции по мирному использованию атомной энергии сделали доклад и показали кинофильм о новом типе реактора.

Спору нет, «Ромашка» с ее полукиловаттной мощностью не конкурент большим советским реакторам.

Но перед нами новое слово в ядерной энергетике.

Кто знает, к каким сдвигам ведет этот путь, по которому сделан лишь первый шаг?

На Женевской конференции сообщалось и о других аналогичных аппаратах. В частности, о советском транзисторном устройстве «Бета‑1». Здесь уже атомную энергию для непосредственного превращения ее в электрическую поставляет не деление урана или плутония, а бета‑распад церия, помещенного в маленький контейнер. Преобразователь дает жизнь радиопередатчику мощностью в 150 ватт, которым оборудована стандартная автоматическая метеостанция. На весенней Международной лейпцигской ярмарке 1965 года удостоен золотой медали следующий представитель того же семейства, созданный Всесоюзным научно‑исследовательским институтом радиационной техники, – «Бета‑2». Он снаряжен стронцием‑90 и рассчитан на 10 лет совершенно независимой работы при полном самообслуживании.

Можно без конца рассказывать о мирных завоеваниях советской ядерной энергетики. Впрочем, почему обязательно энергетики? Разве список гражданских профессий атома исчерпывается одной строкой – «добытчик тепла, света, движущей силы»?

Опуская в скважину источник ядерной радиации, геологи прощупывают пласты, пройденные буром.

Так отыскиваются нефть, газ, уголь, металлические руды. По идее члена‑корреспондента АН СССР Г. Н. Флерова сконструирован и внедрен в практику миниатюрный импульсный ускоритель для нейтронного каротажа (зондирования) земных слоев.

Гамма‑дефектоскопия – некое подобие рентгена, разве что в его более мощном индустриальном исполнении – позволяет заглянуть внутрь детали и выяснить, нет ли там предательских трещин или раковин.

С помощью радиоактивных изотопов человек измеряет уровень жидкости в закрытых резервуарах, следит, не обмелели ли порты. Оценивает степень износа рабочих поверхностей – от кромки резца до огнеупорной футеровки, выстилающей раскаленную пасть доменной печи. Обнаруживает утечки газа из подземных трубопроводов. Снимает сильные заряды статического электричества, угрожающие пожаром.

Узнает структуру отдельных молекул. С фантастической точностью определяет чистоту веществ.

Ускоряет химические реакции. Меняет свойства материалов и даже живых существ. Уничтожает вредителей.

Наконец, лечит. Невозможно перечислить все, что дает атом человеку.

Три с лишним тысячи советских заводов, институтов, лечебниц применяют в своей повседневной практике ионизирующие излучения и свыше тысячи всевозможных радиоактивных препаратов, производящихся в нашей стране. За один только 1962 год это принесло 200 миллионов рублей экономии. С 1961 по 1963 год у нас выпущено более 30 тысяч радиоизотопных приборов.

Как ускорился научный прогресс, сколько экономится усилий и средств с приходом доброго атома!

Как же и когда он пожаловал в нашу страну? Чьи открытия и изобретения подготовили почву для грандиозных завоеваний советской атомной техники?

 

Ревизия после катастрофы

 

«Наука интернациональна, – писал в 1961 году английский ученый Джордж Томсон, широко известный у нас как автор книги „Предвидимое будущее“. – Это очевидно из простого перечня имен: англичанин Чадвик первый открыл нейтроны; итальянец Ферми установил, что они производят определенный эффект в уране, хотя и не смог правильно его объяснить; немец Ган объяснил ошибку Ферми, но сам не сделал последнего шага: не сумел разглядеть процесс ядерного деления. Это выпало на долю его австрийской сотрудницы Лизы Мейтнер, ее племянника Фриша, бежавших от Гитлера, француза Жолио и коллектива американцев, которые почти одновременно открыли явление, обеспечивающее возможность цепной реакции. Здесь названы представители шести национальностей».

Здесь не названы представили русской нации.

Что ж, это вполне простительно: в своей мимолетной иллюстрации сэр Джордж Томсон не задавался целью исчерпывающим образом изложить «этнографический аспект» ядерной проблемы. Иначе ему пришлось бы объяснять, что, например, атомники шестой названной им «национальности» – американцы – на добрую половину состояли из европейцев, «импортированных» Соединенными Штатами. В частности, в США работали Лео Сциллард, Юджин Вигнер, Эдвард Теллер (все из Венгрии); из Италии – Энрико Ферми, Эмилио Сегре; из Германии – Альберт Эйнштейн, причем здесь названы далеко не все выходцы из Старого Света, не говоря уж о том, что сами «аборигены» Нового Света имели тоже довольно пестрый состав (канадец Вальтер Цинн, латиноамериканец Луис Альварес и т. д. и т. п.).

Томсон, бесспорно, не преминул бы назвать датчанина Бора, который стал общепризнанным преемником «патриарха» ядерной физики – неистового новозеландца Резерфорда, скончавшегося в 1937 году. Возможно, он помянул бы польского физика Ротблата, о котором говорилось раньше. А также югославского химика Савича, который вместе с полуполькой‑полуфранцуженкой Ирен Кюри в Париже повторил берлинские опыты Гана – Мейтнер – Штрассмана и опроверг первоначальные выводы знаменитого австро‑германского трио (возражения парижан побудили Гана и Штрассмана перепроверить свои результаты – именно так было экспериментально обнаружено деление уранового ядра, теоретически объясненное вскоре Мейтнер и Фришем. Это эпохальное открытие увенчано Нобелевской премией).

Ну, а советские ученые? Разве не достойны они занять подобающее место в созвездии столь блистательных имен?

…1932 год. На авансцену физики выходит главный герой ядерной драмы – нейтрон. Коротенькая, в полстранички, весточка о его открытии Чадвиком появляется в английском журнале «Нэйчур» 27 февраля.

Это сообщение будто молнией пронзает умы физиков.

Его ждали. Еще в 1920 году Резерфорд высказал догадку: возможно, существует элементарная частица с такой же массой, как у протона, но в отличие от него не имеющая электрического заряда.

Молодой ленинградский теоретик Дхмитрий Иваненко давно уже размышляет над структурой ядра.

Верно ли, что оно представляет собой смесь электронов и протонов? Если так, то, к примеру, у азота оно должно состоять из 14 элементарных положительных зарядов и 7 отрицательных. В итоге получается плюс 7. Если говорить о конечном результате, то он вполне соответствует действительности. Далее. Ядро азотного атома имеет массу, равную 14 единицам.

Так оно и есть: ведь основной вклад в нее вносят 14 протонов; ничтожным же довеском из семи электронов, который в тысячи раз легче, можно пренебречь.

Вроде бы все концы с концами сводятся хорошо, но…

В соответствии с квантовомеханическими воззрениями каждая частица наделяется особой характеристикой – спином. Эта величина и для протона и для электрона равна 12. Число частиц в азотном ядре нечетное – 21. Стало быть, их суммарный спин всегда будет, как выражаются специалисты, «полуцелым».

Между тем вопреки теоретическим предсказаниям он именно целый. Похоже, что ядерный коллектив скомпонован из четного количества сочленов.

И это далеко не единственная неувязка из тех, что давно уже мозолят глаза ученым. Протонно‑электронная модель расползается по швам. К сожалению, ничего лучшего пока не предложено.

А есть ли вообще электроны внутри ядер? Такое недоверие к общепризнанной концепции еще в 1928 году высказали Виктор Амазаспович Амбарцумян, ныне академик, астроном с мировой известностью, и Дмитрий Дмитриевич Иваненко, ныне профессор МГУ, доктор физико‑математических наук. Это звучало как ересь. Ведь налицо был неоспоримый факт: бета‑излучение. Откуда тогда берутся электроны, выстреливаемые ядром, ежели их там нет? Появляются на свет в момент бегства из ядра, не сдавались теоретики – «еретики», а отнюдь не запасены там загодя – подобно тому как, по метафорической аналогии доктора физико‑математических наук С. Ю. Лукьянова, звуки «Лунной сонаты» Бетховена не спрятаны под деревянной крышкой рояля, а зарождаются при ударах о клавиши. Идея советских ученых тогда не встретила поддержки.

Наконец пробил час: открыт нейтрон! Буквально через два‑три месяца в знаменитом «Нэйчур» вслед за чадвиковокой заметкой появляется столь же лаконичная и не менее сенсационная весть: ядра состоят не из электронов и протонов, как думали до сих пор, а из нейтронов и протонов! У автора гипотезы не столь привычное для англосаксонского и романского слуха имя, как Эрнест Резерфорд, Вернер Гейзенберг, Поль Адриен Морис Дирак, Франсис Перрэн. Его зовут Dmitri Iwanenko…

Гипотеза подвергается атакам. Среди оппонентов не кто иной, как проницательный Дирак, математически предвосхитивший в 1928 году открытие позитрона – положительного электрона (1932 год). Тот самый Дирак, на идеи которого опирались Амбарцумян и Иваненко, подвергая сомнению присутствие электронов в ядрах. Но на сей раз могучая интуиция словно отказывает кембриджскому корифею новой физики.

Со скрипом, не без сопротивления рушится протонно‑электронная конструкция. Делаются попытки восстановить ее на новой основе. Так, в июле 1933 года супруги Жолио‑Кюри предполагают, что ядра состоят из своеобразной «смеси» нейтронов с позитронами, где нейтрон является не элементарной частицей, а комплексом – протон плюс электрон.

В сентябре 1933 года докладом Фредерика Жолио‑Кюри «Нейтроны» в Ленинградском физико‑техническом институте открывается I Всесоюзная конференция по атомному ядру. На ней выступает и другой именитый гость – Франсис Перрэн (впоследствии он получит патент на расчет критической массы, а после войны станет верховным комиссаром Франции по атомной энергии). Он считает весьма правдоподобным представление Гейзенберга об облаках, окружающих нуклоны в ядре: электронном, охватывающем протон, и позитронном, в которое одет нейтрон.

На кафедре – Иваненко. В заочной полемике с Гейзенбергом он отстаивает элементарность ядерного нейтрона, как, впрочем, и протона. Он не убежден, что адвокатура Перрэна спасет гейзенберговские электронные и позитронные облака в ядре: подобное состояние маловероятно.

Слушателям и невдомек, что через несколько недель, в конце того же 1933 года, Гейзенберг сойдет с этих шатких позиций. В октябре на VII Сольвеевском физическом конгрессе в Брюсселе он заявит: попытки истолковывать бета‑распад как сосуществование внутриядерных электронов с нуклонами не выдерживают критики.

Изгнание электронов из ядра и воцарение там нейтронов положило конец «азотной катастрофе».

Спин нейтрона равен 12, как и у протона. Общее число нуклонов в ядре азота четное – 14. Потому‑то у него суммарный спин целый. Но бывают ядра и с полуцелым спином. Значит, общее количество нейтронов и протонов в них нечетно.

Новая модель дала возможность точно рассчитывать энергию, высвобождающуюся при радиоактивном распаде.

Дважды два – четыре. Эта арифметическая истина в странном мире ядерных частиц терпит неожиданное фиаско. Оказывается, любое ядро всегда легче простой суммы несвязанных нуклонов, из которых оно возникло. «Недостача», – сказал бы ревизор.

«Дефект массы», – говорят физики. Правда, «материальный ущерб», нанесенный нуклонам при их коллективизации, полностью и тотчас возмещается в драгоценнейшей «валюте» – энергетической, причем такая компенсация в точности равна дефекту массы, умноженному на скорость света в квадрате.

Вся ядерная энергетика зиждется на этой закономерности, о чем бы ни шла речь – о синтезе легких ядер или же о делении тяжелых. У нейтрона масса не точно такая же, как у протона, хотя и близка к ней по своей величине. Эта разница играет существенную роль при вычислениях дефектов масс и энергетических эффектов, когда учитываются ничтожнейшие доли нуклонной плоти. Понятно, к каким грубым ошибкам приводили бы расчеты на основе протонно‑электронной модели, если они вообще были бы возможны. Прочность ядра, его способность делиться, другие кардинальные его свойства зависят от соотношения между количествами нейтральных и заряженных частиц, составляющих сердцевину атома.

Стоит ли говорить, какое значение приобрела в руках теоретиков и экспериментаторов иваненковская модель?

Но так уж повелось, что разрешение одной проблемы немедленно ставит новые вопросы. Какими узами связаны вместе ядерные нуклоны?

Протоны – одноименно заряженные частицы. Они отталкиваются друг от друга. Что же спаивает их в дружный коллектив? Гравитационное взаимодействие? Нет, оно слишком слабо, чтобы противостоять электростатической вражде. Не может оно обеспечить и сильное взаимное влечение незаряженных нейтронов, способное сцементировать их вместе с протонами в сверхплотный ядерный сгусток.

Над этой загадкой мучительно бились физики всего мира. Ломал над ней голову и Энрико Ферми.

Однажды неутомимого римского исследователя осенила идея, которая обещала стать ключом к таинственному, за семью печатями, ядерному ларцу.

Великий итальянец уже засел было за изложение своей концепции, как вдруг…

В одном из номеров «Нэйчур» за 1934 год он прочитал две публикации, еще раз доказывавшие, что идеи «носятся в воздухе». И что в далекой, в такой, по слухам, «неевропейской» России есть свои физики – настоящие профессионалы, занятые проблемами атома.

Одну статью, напечатанную в «Нэйчур», написал москвич И. Е. Тамм, ныне академик, лауреат Нобелевской премии, другую – ленинградец Д. Д. Иваненко. Они дали новый подход к проблеме, после чего она, наконец‑то, была выведена из тупика.

Какова же, по Тамму и Иваненко, природа ядерных сил?

Чтобы объяснить, как действуют силы на расстоянии, физики ввели особое понятие – «поле».

Например, поле гравитационное. Или электромагнитное.

Ни то, ни другое не годилось, чтобы объяснить притяжение нуклонов. А других полей физики не знали.

Тамм и Иваненко предположили: есть специфическое поле ядерных сил, не похожее ни на одно из уже знакомых и все же чем‑то напоминающее их.

Было известно, что, например, взаимное влечение или отталкивание зарядов обусловлено тем, что они обмениваются квантами электромагнитного поля – фотонами. Перебрасываются ими, как жонглеры кольцами или игроки в пинг‑понг плас<


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.096 с.