Методика двух поздних трактатов Ферма — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Методика двух поздних трактатов Ферма

2021-01-29 92
Методика двух поздних трактатов Ферма 0.00 из 5.00 0 оценок
Заказать работу

 

В ·Трактате о квадратурах" используется значительная часть прежних открытий Ферма: его метод максимумов и минимумов, который помогает разделить кривую на отрезки, монотонно возрастающие или убывающие; аналитическая геометрия, позволяющая осуществлять действия с этими отрезками; и, конечно же, прием приравнивания. Как и можно было ожидать, у него получился аналитический трактат. Наоборот, ‘Трактат о спрямлении" методически очень отличается от всего, что Ферма написал к тому времени. Действительно, тулузец отдалился от своего аналитического метода и применил греческий синтетический метод, которым пользовались такие классики, как Евклид. При этом его аналитическое рассуждение оказалось скрыто. Почему он так сделал – загадка, но, возможно, это было связано с традициями. Трудоемкость, которую предполагало написание подобной работы, сравнимая с работой Ньютона в ‘Началах", в свою очередь, могла бы объяснить, почему он не пользовался этим подходом ни в каком другом своем труде.  

 

 

В "Трактате о спрямлении" Ферма в ясном виде приравнивает заданный касательный к кривой отрезок DE к дуге FE (см. рисунок). Для приравнивания данный отрезок обязательно должен быть произвольно малым. Говоря в общих чертах, Ферма думал о кривой как о линии, образованной огромным числом очень маленьких прямолинейных отрезков, каждый из которых является касательным к кривой. Сумма длин этих бесконечно малых отрезков дает длину кривой (спрямление).

Следующим шагом было нахождение суммы длин таких отрезков, и здесь Ферма использовал прием, именуемый сегодня "изменением переменной". Это был гениальный скачок: изменение переменной определяло обычную параболу (второй степени), квадратура которой равна значению разыскиваемой нами суммы. Другими словами, Ферма превратил проблему спрямления в проблему квадратуры, уже известную и решенную им самим. Не довольствуясь достигнутым, он определил бесконечное семейство кривых, основанных на обобщенной параболе, и доказал, что если она спрямляема, то и все остальные тоже. Он сделал это, доказав, что всегда можно построить обычную параболу, которую мы только что упомянули. Ему не только удалось спрямить кривую; он доказал, что число спрямляемых кривых бесконечно.

Но именно этот шаг сведения спрямления к квадратуре снова помешал Ферма увидеть, что результат его спрямления является еще одним уравнением. Он даже не осознал, что почти дотрагивается до основных принципов анализа. Ему удалось начать думать о бесконечно малых, что было важным шагом в открытии анализа, но это не только не привело Ферма к пересмотру своей работы о касательных и максимумах, но он также не смог истолковать свои результаты как уравнения: он думал о подкасательных и площадях.

Годами позже (и частично благодаря работам Ферма) Лейбниц и Ньютон независимо пришли к основным идеям анализа: использованию бесконечно малых и основополагающей идее того, что операция вычисления углового коэффициента касательной к кривой, заданной уравнением А, дает в результате уравнение В, а операция нахождения квадратуры кривой В дает в результате уравнение А. Другими словами, нахождение угловых коэффициентов и квадратур, дифференцирование и интегрирование являются обратными операциями, как сложение и вычитание. Это основная теорема анализа.

Как стало возможным, что Ферма не понял, насколько важное открытие находится рядом? Это ужасно досадно. Так же как и рыцарь Персеваль, Ферма увидел Святой Грааль, но не смог узнать его, что лишило его лавров первооткрывателя. В любом случае, великое открытие, которое удалось сделать Лейбницу и Ньютону, – еще один пример чудесных мостов между внешне непохожими проблемами. С подобным, как мы видели, столкнулись Ферма и Декарт при создании аналитической геометрии, а также Танияма, Симура и Уайлс при работе над гипотезой, которая носит имя первых двух.

И здесь мы почти закончили нашу историю.

 

 

ГЛАВА 6

Вероятность и принцип Ферма

 

Вклад Ферма в математику не исчерпывается большими областями, о которых мы говорили до этого момента, – теорией чисел, а также аналитической геометрией и анализом. Наряду с Паскалем он также стоял у истоков теории вероятностей. Свои же последние годы ученый посвятил полемике с Декартом вокруг оптики.

Говорить о "законах случая", на первый взгляд, нелепо. Как случай, который по определению непредсказуем, может иметь законы? Если сегодня, в разгаре XXI века, это понятие кажется нам удивительным, то во времена Ферма оно было невообразимым. Но такие законы существуют, и Ферма сыграл важную роль в их изучении по инициативе Блеза Паскаля.

Как обычно, все началось с одной задачи. Блез Паскаль, отец которого был одним из парижских корреспондентов Ферма, членом кружка Мерсенна, обратился к Ферма в 1654 году. Он напомнил тому о дружбе с его покойным родителем и поставил перед ним задачу. К тому времени Ферма в течение нескольких лет ни с кем не переписывался. Но в 1650‑х годах он взялся за науку с новыми силами. Ясно, что этого не могло произойти, если бы он не работал скрыто все это время, хотя смерть Бограна, Декарта, Этьена Паскаля и особенно Мерсенна, а также его профессиональные обязанности, не говоря о чуме и бурном политическом климате Фронды, держали Ферма в глубокой изоляции, которую, наконец, пробило письмо Паскаля.

Паскаль познакомился с неким Антуаном Гомбо, шевалье де Мере, настоящим шулером. На основе эмпирических наблюдений тот вывел некоторые правила того, когда следует и не следует делать ставки. Шевалье поставил перед Паскалем задачу, основанную на так называемой игре очков, в которой человек ставит на то, что сможет получить определенный результат: например, число шесть при бросках игральных костей за N попыток, скажем за восемь, как это было в примере Гомбо.

 

 

БЛЕЗ ПАСКАЛЬ

 

Блез Паскаль (1623‑1662), родившийся в Клермоне, во Франции, был гением. В 12 лет юноша представил своему отцу Этьену доказательство того, что сумма углов любого треугольника равна 180°. То есть он доказал одну из основных теорем •Начал· Евклида – книги, о которой мальчик не знал... Впечатленный Этьен лично занялся его образованием. В юношеском возрасте Блез создал механическую вычислительную машину с целью помочь своему отцу в утомительных расчетах, связанных со службой. Когда Этьен получил травму, Блез нанял для ухода за ним двух молодых людей, исповедовавших янсенизм – течение в католической церкви, которому противостояли иезуиты. Ученый обратился в янсенизм, отдавшись крайне суровой религиозной практике, но через некоторое время вернулся к своим исследованиям. Блез Паскаль осуществил важные исследования в области гидростатики и конических сечений, но тем не менее продолжал уделять внимание религии. Его самым известным открытием является треугольник, носящий его имя.  

 

Суть в том, что делается ставка определенного размера, а затем бросают кости либо до тех пор, пока не будут использованы все восемь бросков, а шестерка не выпадет (что означает проигрыш), либо пока не выпадет шестерка, в случае чего бросающий кости выигрывает. Вопрос, который Гомбо задал Паскалю, был следующим: что произойдет, если прервать игру до окончания, скажем после трех бросков? Как разделить ставки между игроками? Каким образом справедливо разрешить спор? Паскаль изложил эту задачу и другие подобные ей в письме, которое не сохранилось. Однако мы знаем ответ Ферма.

Как Ферма, так и Паскалю было ясно, что нужно вычислить количество возможных случаев, с одной стороны, и количество благоприятных случаев для одного игрока, с другой (остальные случаи благоприятны для второго игрока). Затем надо разделить второе число на первое – сегодня это известно как вероятность, хотя тогда никто не пользовался таким термином. Наконец, данную вероятность требуется умножить на сумму ставки. Полученный результат сегодня называется ожидаемым значением.

Основной принцип, который сразу же приняли оба ученых, – события независимы друг от друга. Вероятность получения шестерки при пятой попытке независима от того, что произошло до этого момента. Их вывод кажется тривиальным, если знать теорию вероятностей, но вспомним, что существуют миллионы людей в мире, полагающие, что выигрышный номер рождественской лотереи будет заканчиваться на цифру 4, потому что она давно не выпадала и "уже пора".

Паскаль нашел значение для четвертой попытки: то, каким должен быть справедливый способ распределения выигрыша после трех неудачных попыток, предполагая, что оба игрока рассматривают альтернативу остановить игру или бросить кости в четвертый раз. Следует отметить, что здесь речь идет не об оригинальной задаче Гомбо; она ограничивается только одним броском после трех неудачных. Паскаль нашел, что если не осуществлять бросок, то игрок, который бросает кости, должен получить 125/1296 от исходной ставки (около 10%) – результат сложения всех вероятностей того, что он мог выиграть при первом броске, при втором и при третьем, то есть в прошлом. В соответствии с этим игрок, который бросает кости, имеет право примерно на 10% ставки.

Но Ферма заявил, что он неправ: "Если мой оппонент предложит мне 10%, чтобы я больше не бросал кости, было бы ошибкой соглашаться на них". Вероятность получения шестерки за еще один бросок та же самая, что и при любом другом броске: 1/6, около 17%. Паскаль увидел свою ошибку и согласился с решением Ферма: прошлое не важно. Единственное, что имеет значение для вычисления вероятности,– это будущее.

Но далее Паскаль озвучил несколько сомнений. Во‑первых, он попытался упростить проблему, сведя ее к игре с монетами (орел или решка) так, чтобы шансы были равны для обоих игроков. На основе этого, воспользовавшись рекурсивным методом, алгебра которого довольно сложна, он предложил решение полной проблемы. Здесь он рассматривал уже не только четвертый бросок, но также и оставшиеся возможности: выигрыш участника на пятом, шестом, седьмом или восьмом броске или проигрыш после всех них.

Ферма ответил, что анализ Паскаля верен, но предложил намного более простой метод. Вместо сложного алгебраического ответа Паскаля тулузец просто осуществил пересчет возможных случаев и выбрал среди них благоприятные. Однако на основе невероятной догадки (поскольку ни он, ни Паскаль не делали никаких эмпирических усилий для подтверждения своих результатов) он сделал нечто очень любопытное: Ферма не остановился на ситуации выигрыша бросающего, а рассмотрел случаи, когда он выиграет на бросках с пятого по седьмой, если партия продолжится.

Согласно Ферма, нужно было рассмотреть все эти случаи, чтобы правильно вычислить вероятность. Только таким образом можно быть уверенным в том, что правильно вычислены все возможные и все благоприятные случаи. Он был прав, но ни Паскаль, ни многие из тех, кому стало известно это рассуждение (в частности, Роберваль), сначала не понимал его. Почему нужно продолжать игру, когда один из игроков уже выиграл? Было абсурдным рассматривать данные случаи, поскольку в настоящей игре действие останавливается, как только кто‑то выигрывает, так же как останавливается партия в теннис, когда один из спортсменов выигрывает три из пяти сетов. "Это правда,– комментировал Паскаль в своем ответе,– что два человека могут продолжать игру после того, как один из них выиграл, и что, по логике, остальные броски не изменят результат. Но что произойдет, если их будет три или больше?"

Представим себе, что есть три человека, у которых равная вероятность выигрыша. Если один из них выиграл, скажем, с четвертой попытки, ему невыгодно продолжать игру, поскольку другой сможет сыграть с ним вничью. Такого не происходит с двумя игроками, но может произойти с тремя или более. Паскаль спросил у Ферма: "Как же тогда можно утверждать, что нужно учитывать все случаи до завершения всех восьми бросков?" Не рассматривал ли Ферма не очень реалистичный пример?

 

 

ТРЕУГОЛЬНИК ПАСКАЛЯ

 

Хотя Паскаль и не открыл этот треугольник, зато он был первым на Западе, кто глубоко исследовал его. До него индийские, персидские, китайские и западные математики изучали некоторые аспекты этой любопытной структуры. Самое элементарное свойство треугольника в том, что каждое составляющее его число равно сумме двух чисел, расположенных над ним. Из такого простого свойства вытекает огромное количество результатов.  

Например, двучлен, возведенный в степень η ‑ 1, будет иметь для каждого из его членов коэффициенты, соответствующие ряду треугольника, определяемого п. Так:  

(a + b)0 = 1  

(a + b)1 = 1 · а + 1 · b  

(a + b)2 = 1 · а2 + 2ab + 1 · b2  

(a + b)3 = 1 · а3 + 3a2b + 3ab2 + 1 · b2  

(a + b)4 = 1 · а4 + 4а3b + 6а2b2 + 4аb3 + 1 · b3.  

Другое непосредственное применение треугольника – вычисление сочетаний. Клетка k в ряду n (при нумерации с 0) соответствует всем способам выбрать k элементов из n, если порядок не имеет значения.  

Например, если у нас есть четыре элемента и мы хотим выбрать два из них, при этом порядок не имеет значения, мы можем сделать это шестью способами:  

Именно эту формулу использовал Паскаль для вычисления вероятностей в игре.  

 

 

СПОР ПАСКАЛЯ

 

Любопытно, что Паскаль использовал теорию вероятностей в одной из своих самых важных теологических работ. Французский математик был католическим мыслителем, испытавшим влияние янсенизма. В знаменитых "Мыслях"– книге, которую он начал писать вскоре после смерти своего отца, но так и не закончил,– Паскаль говорит о вере в Бога в утилитарной форме, как о споре. Если не верить в Него, но Он на самом деле существует, мы будем вечно прокляты: следовательно, рационально верить. Даже если мы не уверены, ожидаемое значение (вечное спасение) в бесконечное число раз больше, если мы будем верить, чем если мы не будем верить (в таком случае – вечное проклятие). Этот аргумент критиковали несколько философов, но здесь важно оценить, как математическая мысль проникла в философию Паскаля.  

 

Паскаль не только поставил этот вопрос. Он ответил самому себе, пользуясь своим треугольником для вычисления всех возможных сочетаний. Полученный им ответ, как ему показалось, не был правильным, и он решил найти парадокс в методе Ферма. На его письмо, самое сложное из написанных Паскалем, датированное 24 августа 1654 году, Ферма ответил очень кратко.

Ошибка Паскаля была очевидной для тулузского судьи: он забыл, что даже если учесть все сочетания, поскольку предполагается, что игра будет продолжаться до конца, то целью является только рассмотрение всех возможных случаев. Благоприятными случаями, например для игрока А, можно назвать только те, в которых А выигрывает, даже если В и С сыграют с ним потом вничью. Ничья не имеет значения, так как А уже выиграл. Как будто футбольный матч закончился 2:1, но игроки договорились, чтобы развлечься, продолжить играть еще немного. Официальный результат, независимо от того, будет ли потом ничья, останется 2:1. Другими словами, следует учитывать порядок, в котором встречаются благоприятные случаи. Если вычислить благоприятные случаи, учитывая порядок, парадокс исчезает.

Паскаль принял объяснение Ферма и счел проблему решенной. Ни Паскаль, ни Ферма больше не возвращались к теории вероятностей. В любом случае, из этой короткой переписки возникли важнейшие основополагающие идеи для последующего развития теории вероятностей, которое продолжили сначала Христиан Гюйгенс, а затем гениальная семья Бернулли.

Поправку Ферма, касающуюся пространства элементарных событий, сложно представить себе интуитивно и понять. Рассмотрим это на примере. Представим себе: некий человек говорит, что у него двое детей, из которых один мальчик. Какова вероятность того, что его другой ребенок тоже мальчик? Большая часть людей ответит: 50 %. Но это неверно. Существует четыре возможности в пространстве элементарных событий, которые мы можем записать в следующем виде: МД, ММ, ДМ, ДД. Ясно, что четвертая возможность исключается из‑за предоставленной нам информации. Но остаются три, а не две равновероятные возможности. Следовательно, вероятность того, что другой ребенок окажется мальчиком, равна 1/3.

Паскаль и Ферма установили способ рассуждения о будущем. Оно непредсказуемо полностью от события к событию, зато предсказуемо в целом, когда подобные события повторяются достаточное число раз. Это стало удивительным откровением, будущую судьбу которого едва ли можно было тогда предвидеть.

В обращении к Академии Мерсенна Паскаль говорил о своих математических работах, закончив перепиской, которую он поддерживал с Ферма. Он уверял, что они оба получили нечто парадоксальное:

"Так, соединив строгость доказательств науки с неопределенностью случая и примирив между собой эти две внешне противоположные вещи, можно справедливо объединить их названия в удивительный заголовок: "геометрия случая".

Итак, на тот момент Паскаль уже полностью осознавал это достижение: оказалось, что случай, как правило, распределяется "справедливо" (выражаясь его несколько теологическими словами) и это распределение можно выразить "математически". А когда Паскаль говорит о геометрии, на самом деле он имеет в виду математику в целом. К сожалению, Паскаль был уже серьезно болен в то время, когда развивалась его переписка с Ферма. В одном из писем он сообщал тулузцу, что лежит в постели и что он получил его письмо, но не смог прочесть. Почти точно известно, что у Блеза Паскаля был рак желудка, который и убил его. Паскаль был нездоров уже с 20 лет, страдал от ужасных головных болей и медленно угасал.

Через шесть лет после их краткой переписки, в 1660 году, зная, что Паскаль уехал из Парижа в родной город Клермон на лечение, Ферма предложил ему личную встречу. К тому времени у тулузца тоже не было сил предпринять путешествие, и он предложил Паскалю промежуточное место. Но Паскаль ответил, что это невозможно. Он также сказал Ферма, что ему было бы очень приятно познакомиться с ним лично, не из‑за математики (геометрии, как он говорил), ради которой он уже не сделал бы и пары шагов, а из‑за удовольствия побеседовать с человеком, которым так восхищался. Называя Ферма "главным геометром Европы", он в то же время выражал безразличие к этому занятию, убеждая героя нашей книги в том, что качества его души ценнее всего его математического знания. Теолог выиграл партию у ученого в сердце больного Паскаля.

Как бы то ни было, Паскаль сообщил Ферма, что его целью было вернуться в Париж как можно более комфортным способом: по каналам. Можно догадаться, что из‑за болей он не мог даже представить себе, как залезть в дилижанс. Паскаль умер в 39 лет настоящим аскетом, каким он был всю свою жизнь. Религиозность убедила его в том, что страдания являются естественным состоянием человека, и он принял свой крест с мужеством и стоицизмом. Паскаль видел, как янсенизм, который он так защищал, был объявлен ересью и, следовательно, начал подавляться королем. Он написал последнюю работу в защиту своих идей и скончался 18 августа 1662 года. Ферма остался один. Теоретически его учеником мог стать Христиан Гюйгенс, но голландец, хотя и признавал гений тулузского ученого, был неспособен понять его. Великому математику XVII века так и не удалось создать школу.

 

 

ОПТИКА И ПРИНЦИП ФЕРМА

 

Вспомним, что полемика с Декартом началась с замечаний Ферма о "Диоптрике", одном из приложений к "Рассуждению о методе". В предыдущей главе мы не очень глубоко рассматривали аргументы Ферма, поскольку именно на эту тему они практически не спорили. Их полемика быстро перешла на методы максимумов и минимумов и построения касательных.

Но ближе к концу жизни, когда Декарт уже восемь лет как был мертв, Ферма снова вернулся к этому разговору.

 

Мне бы очень хотелось знать, что он [Ферма] ответит как на письмо, которое я прилагаю к этому, так и на предыдущее, в котором я ответил на его выпад против моей "Диоптрики". Я написал оба эти письма для того, чтобы он их прочитал, если Вы окажете мне эту любезность".  


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.058 с.