Определение размеров магнитной системы и массы стали по параграфу 8,1. — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Определение размеров магнитной системы и массы стали по параграфу 8,1.

2020-10-20 101
Определение размеров магнитной системы и массы стали по параграфу 8,1. 0.00 из 5.00 0 оценок
Заказать работу

Принята конструкция трёхфазной плоской шихтованной магнитной системы, собираемой из пластин холоднокатаной текстурованной стали марки 3404,0,35 мм по рис 4. Стержни магнитной системы скрепляются бандажами из стеклоленты, ярма прессуются ярмовыми балками. Размеры пакетов выбраны по табл. 8.4 (Л-1), для стержня диаметром,0320 м без прессующих пластин. Число ступеней в сечении стержня 9, в сечении ярма 7.

 

       Размеры пакетов в сечении стержня и ярма по табл. 8.4

 

№ пакета Стержень, мм Ярмо (в половине поперечного сечени), мм
1 310´40 310´40
2 295´22 295´22
3 270´24 270´24
4 25014 25014
5 230´11 230´11
6 215´7 215´7
7 195´8 195´8
8 155´12
9 135´5

 

Общая толщина пакетов стержня (ширина ярма): 0,286 м.

По табл. 8.7 (Л-1)

Площадь ступенчатой фигуры сечения стержня: Пф.с = 746,2 см2 = 0,07462 м2;

Площадь ступенчатой фигуры сечения ярма: Пф.я = 762,4 см2 = 0,07624 м2;

Объём угла магнитной системы: Vу = 20 144 см3 = 0,020144 м3

 

Активное сечение стержня:

Пс = kз´Пф.с = 0,97´0,07462 = 0,07238 м2

 

  Рис. 4                                                  215                                                               

                                                            195                                                             

                                                            155                                                            

                                                            135                                                                     

5                                                                                                                                    

12                                                                                                                                 

8                                                                                                                                       

7                                                                                                                       11       

                                                                                                                                         

                                                                                                                           14         

                                                                                                                                         

                                                                                                                          24          

                                                                                                                                     

                                                                                                                                         

                                                                                                                          22         

                                                                                                                                         

                                                                                                                            40       

                                                                                                                                         

                                                                                                                                     

                                               528                 528                                                                                    

                                                                                                                                         

                                                                                                                                     

                                                                                                                                         

                                                                                                                                     

                                                                                                                                         

                                                                                                                                     

                                                                                                                                         

                                                                                                                                     

                                                                                                                                         

                                                                                                                                     

                                                                                                                                     

                                                                                                                                         

                                                                                                                                     

 

Активное сечение ярма:

Пя = kз´Пф.я = 0,97´0,07624 = 0,07395 м2

Объём стали угла магнитной системы:

Vу.ст = kз´ Vу = 0,97´0,020144 = 0,019539 м3

Длина стержня:

l с = 0,820+2´0,075 = 0,97 м

Высота ярма прямоугольного сечения:

h я = =  = 0,316

Расстояние между осями стержней:

С = D2`` + a22`´10-3 = 0.498+0.030 = 0.528 м

Массы стали в стержнях и ярмах магнитной системы рассчитываем по (8,6), (8,8)–(8,13) (Л-1):

Масса стали угла магнитной системы:

Gу = Vу.ст.´gст; где g ст = 7650 кг/м3

Gу = 0,019539´7650 = 149,5 кг

Масса стали ярм:

Gя = Gя` + Gя`` = 2Пя ´2Сgст + 2Gу = 2´0,07395 + 2´0,528´7650 + 2´149,5 = 1194,79+299 = 1493,79» 1493,8 кг

Масса стали стержней:

Gс = Gс` + Gс`` = 1611,3 + 66,45 = 1677,75 кг

где Gс` = 3´ l с´Пс´gст = 3´0,97´0,07238´7650 = 1611,3 кг

Gс`` = 3´(Пс´а´gст  – Gу) = 3 (0,07238´ 0,31´7650 – 7650 –149,5) = 66,45 кг

Общая масса стали:

Gст = Gя + Gс = 1493,8 + 1677,75 = 3137,5 кг

 

Расчёт потерь холостого хода.

Расчёт потерь холостого хода производим по параграфу 8.2

Индукция в стержне:

Вс =  = = 1,59 Тл

Индукция в ярме:

Вя =  = = 1,56 Тл

Индукция на косом стыке

Вкос . =  =  = 1,124 Тл

Площади сечения немагнитных зазоров на прямом стыке среднего стержня равны соответственно активным сечениям стержня и ярма.

Площадь сечения стержня на косом стыке:

Пкос . = Пс = 1,41´0,07238 = 0,1024 м2

Удельные потери для стали стержней, ярм и стыков по табл. 8.10 (Л-1) для стали марки 3404 толщиной 0,35 мм при шихтовке в две пластины:

При Вс = 1,59 Тл, рс = 1,269 Вт/кг; рз = 974 Вт/м2

При Вя = 1,56 Тл, ря = 1,207 Вт/кг; рз = 934 Вт/м2

При Вкос. = 1,124 Тл, ркос = 445 Вт/м2

Для плоской магнитной системы с косыми стыками на крайних стержнях и прямыми стыками на среднем стержне, с многоступенчатым ярмом, без отверстий для шпилек, с отжигом пластин после резки стали и удаления заусенцев для определения потерь применим выражение (8,32) (Л-1).

На основании параграфа 8,2 и табл. 8,12 принимаем:

kп.р. = 1,05; k п.з. = 1;. k п.я. = 1; k п.п. = 1,03; k п.ш. = 1,05.

По таблице 8,13 (Л-1) находим коэффициент k п.у. = 10,18.

Тогда потери холостого хода:

Рх = [ kп.р´ k п.з.´(рсGс + ряGя` – 4ряGу + ´k п.у.´ Gу) + 4´Пкос.´ркос + + 1´Пс´рз + 2´Пя´рз ] ´k п.я ´ k п.п. ´ k п.ш.

Рх = [1,05´1´(1,269´1677,75+1,207´1194,79-4´1,207´149,5+  ´ 

´10,18´149,5) + 4´0,1024´445+1´0,07238´974+2´0,07395´934 ] ´1´1,03´1,05 =  = [1,05´5094,4+182,272+70,5+ +138,14] ´ 1,0815 = 5740´1,0815 = 6207,8 Вт

Или ´100 = 159 % от заданного

Расчёт тока холостого хода.

Расчёт тока холостого хода производим по параграфу 8.3.

По таблице 8,17 (Л-1) находим удельные намагничивающие мощности:

При Вс = 1,59 Тл, qс = 1, 715 В A /кг; q с.з = 18480 В A /м2

При Вя = 1,56 Тл, qя = 1, 575 В A /кг; q я.з = 20700 Вт/м2

При Вкос. = 1,124 Тл, q кос = 2620 ВА/м2

Для принятой конструкции магнитной системы и технологии её изготовления используем (8.43), в котором по параграфу 8.3 и таблице 8.12 и 8.21 принимаем коэффициенты:

k т.р. = 1,18; k т.з. = 1,0; k т.пл. = 1,20; k т.я. = 1,0; k т.п. = 1,05;

k т.ш. = 1,06.

По таблице 8,20 (Л-1) находим коэффициент k п.у. = 10,18.

Q х = [ kт.р´ k т.з.´ (qсGс + qяGя` – 4qяGу + ´k т.у.´k т.пл.´Gу)+4.´qкос´ ´Пз.кос + 1´Пс´qс.з + 2´Пя´qя.з ] ´k т.я ´ k т.п. ´ k т.ш.

Q х = [1,18´1´(1,715´1677,75+1,575´1194,8-4´1,575´149,5+ ´ ´42,45´1,20´149,5) + 4´2620´0,1024+1´18480´0,07238+2´20700´0,07395]´ ´1´1,05´1,06 = [1,18´(2877,34125+1881,81-941,85+50110,1874)+1073,152+ +1337,5824+3061,53]´1,113 = [1,18´53927,48865+5472,2644]´1,113 = 69106,701007´1,113 = 16915,75822079» 76 915,8 ВА

Ток холостого хода

i 0 = Qx/10S = 76915,8/10´2500 = 3,077 %

или = 279 % заданного значения.

Активная составляющая тока холостого хода:

i = = 0,248 %

Реактивная составляющая тока холостого хода:

i = = 3,067 %

 

Тепловой расчёт обмоток.

Тепловой расчёт обмоток производится согласно параграфу 9.5 (Л-1).

Внутренний перепад температуры

Обмотка НН по (9.9) и по рис. 9.9 (Л-1).

Q 01 =  =  = 1,15 ° С

где d – толщина изоляции провода на одну сторону, d = 0,25 ´ 10-3 м;

q – плотность теплового потока на поверхности обмотки;

l из – теплопроводность бумажной, пропитанной маслом изоляции провода по табл. 9.1 (Л-1), lиз = 0,17 Вт/(м´°С);

Обмотка ВН по (9.9) и рис 9.9 (Л-1);

Q 02 =  =  = 1,06 ° С

 

 

 

Перепад температуры на поверхности обмоток:

Обмотка НН:

Q о, м1 = k 1´ k 2´ k 3´0,35´ q 0,6 = 1´1,1´0,8´0,35´7800,6 = 16,7 ° С

где k 1 = 1 – для естественного масляного охлаждения;

k 2 = 1,1 – для внутренней обмотки НН;

k 3 = 0,8 – по таблице 9.3 (Л-1) для hk/a = 5/22 = 0.23.

Обмотка ВН:

Q о, м2 = k 1´ k 2´ k 3´0,35´ q 0,6 = 1´1´0,85´0,35´7190,6 = 15,4 ° С

где k 1 = 1 – для естественного масляного охлаждения;

k 2 = 1,1 – для внешней обмотки ВН;

k 3 = 0,8 – по таблице 9.3 (Л-1) для hk/a = 4,5/25 = 0.18.

Полный средний перепад температуры от обмотки к маслу:

Обмотка НН:

Q о, м. ср. =Qо1 + Qо, м1 = 1,15+16,7 = 17,9 ° С

Обмотка ВН:

Q о, м. ср. =Qо2 + Qо, м2 = 1,06+15,4 = 16,46 ° С

 

Тепловой расчёт бака.

Тепловой расчёт бака проводится согласно параграфу 9.6.

По таблице 9.4 (Л-1), в соответствии с мощностью трансформатора выбираем конструкцию S = 2500 кВА, выбираем конструкцию гладкого бака с навесными радиаторами и прямыми трубами по рис. 9.16 (Л-1). Минимальные внутренние размеры бака – по рис. 9.18, (а) и (б), (Л-1).  

Изоляционные расстояния отводов определяем до прессующей балки верхнего ярма и стенки бака. До окончательной разработки конструкции внешние габариты прессующих балок принимаем равными внешнему габариту обмотки ВН.

S1 = 40 мм S3 = 23 мм
S2 = 42 мм S4 = 90 мм
d2 = 10 мм d1 = 20 мм

Минимальная ширина бака по рис. 9.18, (а) и (б), (Л-1).

В = D2``+(S1 + S2 + d2 + S3 + S4 + d1) ´ 10-3 = 0.5+(40+42+20+25+90+10) ´ ´10-3  = 0.727 м

Принимаем В = 0,76, при центральном положении активной части трансформатора в баке.

Длина бака:

А = 2С+В = 2´0,53+0,76 = 1,82 м.

Высота активной части по (9.24) (Л-1):

На.ч . = l с + 2hя + n ´ 10 = 0,97+2´0,316+0,05 = 1,65 м.

uде n = 0,05 м – толщина бруска между дном бака и нижним ярмом

Принимаем расстояние от верхнего ярма до крышки бака при горизонтальном расположении над ярмом переключателя ответвлений обмотки ВН по табл. 9.5 (Л-1).

Ня.к . = 400 мм = 0,4 м.

Глубина бака:

Нб = На.ч+ Ня.к. = 1,65+0,4 = 2,05 м.

Для развития должной поверхности охлаждения целесообразно использовать радиаторы с прямыми трубами по рис. 9.16 (Л-1).

Расстояние между осями фланцев по табл. 9.9 (Л-1):

Ар = 2000 мм

Поверхность конвекции труб:

Пк.тр. = 6,253 м2

Поверхность конвекции двух коллекторов при двух рядах:

Пк.к = 0,34 м2

Минимальные расстояния осей фланцев радиатора:

От нижнего среза стенки бака с1 = 0,085 м

От верхнего среза стенки бака с2 = 0,1 м

Для установки этих радиаторов глубина бака должна быть принята:

Нб = Ар + с1 + ­с2 = 2,000 + 0,085+0,1 = 2,2 м

Допустимое превышение средней температуры масла над температурой окружающего воздуха для наиболее нагретой обмотки НН по (9.32) (Л-1):

Qм.в = 65-Qо.м.ср. = 65-17,9» 47 ° С

найденное среднее превышение может быть допущено, так как превышение температуры масла в верхних слоях в этом случае будет

Qм.в.в = d´Qм.в = 1,2´47 = 56,4 ° С < 60° С

Принимая предварительно перепад температуры на внутренней поверхности стенки бака Qм.б. = 5 °С и запас 2 ° С, находим среднее превышение температуры наружной стенки бака над температурой воздуха:

Qб.в . = Qм.в + Qм.б = 47-5-2 = 40 ° С

Для выбранного размера бака рассчитываем поверхность конвекции гладкой стенки бака:

Пк.гл . = Нб [2(А-В) +pВ] = 2´[2´(1,82-0,76)+3,14´0,76] = 9 м2

Ориентировочная поверхность излучения бака с радиаторами по (9.35) (Л-1):

Пи = k ´Пк.гл. = 1,5´9 = 18 м2

Ориентировочная необходимая поверхность конвекции для заданного значения Qб.в. = 40° С по (9.30) (Л-1):

Пк ` = – 1,12´Пи = – 1,12´18 = 104,67 м2

Поверхность конвекции составляется из:

Поверхности гладкого бака: Пк.гл. = 9 м2

Поверхности крышки бака:

Пк.кр . = 0,5 [(А-В)´(В+0,16) + ] = 0,5´[(1,82-0,76)´(0,76+ +0,16) +3,14´ ] = 0,82 м2

Где 0,16 – удвоенная ширина верхней рамы бака; коэффициент 0,5 учитывает закрытие поверхности крышки вводами и арматурой.

Поверхность конвекции радиаторов:

åПкр. = Пк` - Пк.гл – Пк.кр. = 104,67-9-0,82 = 94,85 м2  

поверхность конвекции радиаторов, приведённая к поверхности гладкой стенки (табл.9.6) (Л-1):

Пк.р . = Птр.´ k фк.к = 6,253´1,26+0,34 = 8,22 м2  

Необходимое число радиаторов:

 = 94.85/8.22» 11.5


Принимаем 12 радиаторов с расположением по рис. 5.

 

Рис. 5. Расположение радиаторов на стенке бака.

 

 


                                                                                                                            

                                                                                                                                         

 

Поверхность конвекции бака:

Пк = åПк.р. + Пк.гл. + Пк.кр. = 12´8,22+9+0,82 = 108,46 м2

Поверхность излучения: Пи = 18 м2

Определение превышения температуры масла и обмоток над температурой охлаждающего воздуха по параграфу 9.7.

Среднее превышение температуры наружной поверхности трубы над температурой воздуха по (9.49) (Л-1):

Q б.в = =  = 39 ° С

среднее превышение температуры масла вблизи стенки над температурой внутренней поверхности стенки трубы по (9.50) (Л-1):

Q м.б = 0,165 ´ = 0,165 ´  = = 5,6 ° С

Превышение средней температуры масла над температурой воздуха:

Qм.в . = Qм.б + Qб.в = 5,6+39 = 44,6 ° С

Превышение температуры масла в верхних слоях над температурой воздуха:

Qм.в.в = k ´Qм.в = 1,2´44,6 = 53,52 ° С < 60° С

Превышение средней температуры обмоток над температурой воздуха:

Обмотки НН;

Qо.в1 = Qо1 + Qо.м1 + Qм.в = 1,15+16,7+44,6 = 62,45 ° С < 65° С

Обмотки ВН;

Qо.в2 = Qо2 + Qо.м2 + Qм.в = 1,15+16,7+44,6 = 62,45 ° С < 65° С

Превышения температуры масла в верхних слоях Qм.в.в < 60 ° С и обмоток Qо.в < 65 ° С лежат в пределах допустимого нагрева по ГОСТ 11677-85.

 

ЛИТЕРАТУРА.

(Л-1) – Тихомиров П.М. ''Расчёт трансформаторов'', издательство Москва, энергоатомиздат 1986 г.


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.