Проблема истинности в математическом познании. — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Проблема истинности в математическом познании.

2020-10-20 519
Проблема истинности в математическом познании. 0.00 из 5.00 0 оценок
Заказать работу

Понятие истинности математической теории играет важную методологическую роль в философии математики в контексте связующего звена между онтологическими и гносеологическими аспектами проблемы обоснования математики. Проблема обоснования современной математики толкуется в неклассической и постнеклассической науке не как проблема абсолютного обоснования, а как экспликация систематизации всех направлений развития математики. Кроме того, с точки зрения обоснования математики, проблема истины в математике заключается в том, что, даже при точном определении языка математики, математические предложения, которые являются истинными либо ложными, или во всяком случае осмысленными в одном языке, могут быть бессмысленными выражениями в другом, например, естественном языке. В связи с неоднозначностью философского понимания истины в современной математике следует обратить внимание на то, что современная математика вовсе не настаивает на том, что некоторое ее утверждение непременно истинно, а считает, что если принять ряд предположений, то данное утверждение является их логическим следствием.

В результате философского осмысления сложной проблемы обоснования современной математики, даже несмотря на то, что математические теории исходят из истинных оснований и законов дедукции, математика остается самой сложной для понимания наукой Как известно, одной из сложнейших проблем теории познания является проблема истины: возможно, это самая сложная философская проблема, поэтому мы сузим рассмотрение этой трудной темы до философского понимания истины в контексте обоснования современной математики, хотя не каждый философ математики будет говорить, например, об «истинной математике» как единственно возможном своде правильных рассуждений и умозаключений.

До конца девятнадцатого века мало кто сомневался в истинности математических теорий, однако с возникновением неевклидовых геометрий, наряду с заботой о непротиворечивости выбираемых систем аксиом, снова пришлось возвращаться к проблеме истинности, но уже на более высоком уровне метаматематического обоснования. В рамках фундаменталистского направления в философии математики математическое утверждение «возводится в ранг истины» посредством доказательства, которое рассматривается как необходимый атрибут математического мышления. Это означает, что в фундаментализме истинным является доказанное математическое знание. Вообще, отметим, что «объяснение природы математической истины является центральной темой и в современной философии математики, включающей в себя вопросы эпистемологии и онтологии формальных теорий.

Философов математики интересует не только проблема обоснования математики в плоскости эпистемологии или вопрос о природе математического знания в аспекте онтологии, а, прежде всего, вопрос о том, какую функцию истина выполняет в математическом знании. Вопрос об онтологической истинности математических предложений и теорем зависит от философского взгляда на природу самой математики, а также от интерпретации понятия доказательства и метаматематического понятия непротиворечивости. Поэтому, анализируя развитие философских представлений по проблеме обоснования современной математики, нельзя не связать их с актуальной темой «истины в математике», поскольку особенности математического познания находят свое отражение в понимании возможности убедительного доказательства математических теорем в качестве «эталона истины». философская концепция истины не должна оценивать достоинства различных направлений обоснования математики, т.к. математическая истина не рассматривается как нечто законченное и навсегда незыблемое. Даже ограничения формализма, установленные теоремами Геделя, не поколебали общего убеждения современных математиков в его целесообразности, а возникающие при их разрешении трудности давали дальнейшие мощные импульсы к развитию математики на современном этапе.

Если оценивать концепцию истины, то можно заключить, что ее не следует связывать исключительно с формалистским направлением. Это можно аргументировать отсутствием общепринятого представления о том, что такое знание, и чем же оно отличается от веры. Еще важно исследовать разнообразные философско-методологические факторы, релятивизирующие результаты познавательной математической и интеллектуальной деятельности, т.к. в методологии обоснования современной математики отражаются все тенденции, свойственные философии и связанные с философской проблемой истины. Фактически она сводится к главному онтологическому вопросу о существовании математических объектов, в котором переплетаются различные философские проблемы, в частности, касающиеся понятия математической истины.

В довольно широкой философской перспективе не следует также связывать математическую истину, ограниченную математическим доказательством и реализуемую поэтапно в генезисе математического познания, исключительно с направлением формализма Гильберта в обосновании математики. Классическая теория истины как соответствия знания реальности называется корреспондентной, но наряду с этой теорией истины в философии науки можно еще выделить когерентную теорию, суть которой состоит в том, что истинными в ней считаются любые внутренне непротиворечивые и согласованные высказывания. Ее определенным философским недостатком является то, что указанные высказывания могут быть произвольными.

Среди других теорий истины определенным влиянием пользуется прагматическая концепция истины, согласно которой истина выступает как практическая полезность и эффективность знания, которые имеют непосредственное отношение к современной математике. Механизмы признания истинности научного знания, вообще говоря, не ограничиваются совокупностью одних только логико-эпистемологических процедур, а в общефилософском контексте с учетом реальной математической практики, в случае невозможности доказательства непротиворечивости математической теории, следует также признать допустимость социокультурного критерия практической полезности.

Комментарии из вопросника. Применима ли в математике традиционная концепция истины как соответствия, если да, то что чему здесь соответствует? Непротиворечивость, выполнимость и т.д.

 

 

Своеобразие критерия истины в математике выражается и в том, что, как правило, в качестве такого критерия выступает теория арифметики натуральных чисел, истины которых являются незыблемыми для каждого математика. Впрочем, в какой-то мере это относится ко всем наукам, если иметь ввиду наличие в философии (как мировоззренческой и методологической основе науки) принципиальных положений, с которыми должны согласовываться все выдвигаемые гипотезы.

Необходимо заметить, что использование в качестве непосредственного критерия истины арифметики натуральных чисел означает, что этот критерий органически связан с двумя другими требованиями – точностью и непротиворечивостью. Удовлетворение этим двум критериям – тоже необходимое условие истинности математических построений.

Витгенштейн: доказательства непротиворечивости являются бессмысленными, поскольку не дают никакой гарантии против противоречий, возникновение которых связано с применением теоретических средств, а вовсе не со структурой или строением теории. В силу того, что избежать нежелательного употребления теоретических средств в принципе невозможно, любые основания математики будут ненадежными.

Оценка современного состояния проблемы обоснования математики резюмирована в монографии Е.Беляева и В. Перминова: «Общей концепции, которая бы позволила ответить на все философские вопросы, возникающие в связи с проблемой обоснования математики в XX веке, пока не существует». Ряд положений:

1. Основное требование к математике и цель ее обоснования — ее непротиворечивость. Обоснование математике состоит в устранении существующих противоречий и в выработке средств анализа, предупреждающих появление таких противоречий в будущем.

2. Единая программа обоснования математики типа гильбертовской или расселовской в настоящее время уже невозможна.

3. Невозможна единая теоретическая база обоснования математики, т.е. невозможно обосновать математику сведением всех ее положений к одному ее разделу. Ни логика, ни арифметика не могут выступать в качестве такой последней основы.

4. Обоснование математики не временный, но пост процесс, необходимая сторона развития мат знания в целом.

Тезис логицизма: математические объекты могут вводиться только на основании тезиса о непротиворечивости, т.е. математический объект может быть признан существующим, если он мыслим непротиворечивым образом. (См. 2.3)

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.