Если хотя бы один из потомков проявит рецессивный признак, значит генотип родителя с доминантным признаком был гетерозиготным. — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Если хотя бы один из потомков проявит рецессивный признак, значит генотип родителя с доминантным признаком был гетерозиготным.

2020-08-21 90
Если хотя бы один из потомков проявит рецессивный признак, значит генотип родителя с доминантным признаком был гетерозиготным. 0.00 из 5.00 0 оценок
Заказать работу

Мы объясним это позже. Важно отметить, что чем больше растений вы тестируете, тем выше вероятность получения достоверного результата.

 

В нашем примере неизвестный нам генотип или BB или Bb. Внесем эту информацию в так называемые квадраты Пунне.

  b B
B    
?    

 

Мы начали с того что внесли известные нам генотипы. Мы будем вести расчет для двух родительских растений. Нам известно что рецессивный признак bb а другой или Bb или BB, так что неизвестное значение обозначим B?. Наш следующий шаг – заполнение таблицы:

 

  b b
B Bb Bb
? ?b ?b

 

Первый ряд потомства Bb и Bb будут обладать доминантным золотым окрасом бутонов.?b и?b будут впоследствии или Bb Bb, или bb bb. Это приведет впоследствии к потомству которое даст или больше золотых бутонов (Bb) или серебряных (bb). Существует 2 возможных результата:

 

  b b
B Bb Bb
B Bb Bb

 

Первый возможный результат с?=B. Это означает, что все потомки будут с золотыми бутонами.

 

  b b
B Bb Bb
b bb bb

 

Второй возможный результат с?=b. Это означает, что часть потомков будет с золотыми бутонами (bb).

В первом случае мы не сможем получить Silver Bud в потомстве.

Во втором возможном случае мы получим часть растений с золотыми бутонами часть с Silver Bud. И мы можем подсчитать частоту появления того или иного цвета.

 

Bb+Bb = 2Bb

bb+bb = 2bb

 

2 растения из 4-х будут с золотыми бутонами и 2 растения из 4-х будут Silver Bud. Таким образом мы получаем процентное соотношение 50:50.

 

Второй возможный вариант потомства говорит нам следующее:

  1. Чтобы передать рецессивный признак каждый из родителей нуждается по меньшей мере в одном b (например, в нашем случае рецессивный Silver Bud).
  2. Если в потомстве проявляется хотя бы один рецессивный признак (в нашем случае Silver Bud) тогда неизвестный родитель B? - это Bb. Это не может быть BB.

 

Помните:

 

Гомозиготный доминантный: BB = Golden Bud

Гетерозиготный: Bb = Golden Bud

Гомозиготный рецессивный: bb = Silver Bud.

 

Итак, если при скрещивании родителя Golden Bud с родителем Silver Bud получается потомство только с Golden Bud, тогда родитель должен быть гомозиготным доминантным для этого признака. Если у родителя есть Silver Bud, значит он гетерозиготный.

 

Правила следущие:

 

  1. Растение с доминантным признаком всегда скрещивается с растением с рецессивным признаком.
  2. Если ХОТЯ БЫ ОДИН потомок проявляет рецессивный признак, то генотип - гетерозиготный.
  3. Если ВСЕ потомки имеют доминантный признак, это гомозиготный доминантный генотип.
  4. Чтобы получить достоверные результаты необходимо большое число растений для эксперимента.

 

Это ваш первый шаг в мир размножения потому что:

 

(1) Когда вы размножаете растения, вы хотите продолжить какой-то понравившийся вам признак (какой-то внешний признак, или вкус, или высоту растения).

(2) Чтобы осуществить это, вам необходимо знать какой это признак: гомозиготный доминантный гетерозиготный или гомозиготный рецессивный.

(3) Выяснить это вы можете с помощью перекрестного теста.

 

Может возникнуть вопрос – как продолжить у потомков сразу несколько родительских признаков например вкус, запах, силу и цвет? Чтобы ответить на этот вопрос вернемся снова к равновесию Х-В.

 

 

Закон равновесия Х-В Часть 2

 

Если скрестить два гетерозиготных (Bb) по признаку растения что мы получим?

 

  B b
B Bb
b Bb bb

 

Итак, в этой группе потомков процентное соотношение будет таким:

1 BB

2 Bb

1 bb.

Это означает, что:

25% потомков гомозиготны по доминантной аллели (BB),

50% гетерозиготны подобно родителям (Bb) и

25% гомозиготны по рецессивной аллели (bb).

 

Рассмотрим это подробнее. 25% потомков в отличие от своих родителей проявят рецессивный признак bb. То есть, даже взяв обоих родителей у которых наблюдаются только золотые бутоны, но гетерозиготных по этому признаку, мы получим потомство с серебряными цветами. Но поскольку оба родителя доминантны по золотому окрасу цветов, то они не проявляют серебряного окраса.

Это и есть размножение. Когда у нас есть сорт который мы хотим сохранить, как узнать что нужное нам свойство действительно сохранится в процессе размножения? 

Для этого и существует перекрестный тест. Если мы производим семена из сорта купленного нами в банке семян как можно быть уверенным что потомки будут обладать всеми необходимыми нам свойствами? Итак, если признак(и) необходимые нам гомозиготные доминантные у обоих родителей тогда у потомства никогда не проявятся рецессивные гены по этому признаку. Докажем это:

 

  B B
B BB BB
B BB BB

 

Также, если оба родителя обладают рецессивным признаком, то у потомства нет шансов проявить доминантный признак.

 

  b b
b bb bb
b bb bb

 

Итак, мы начинаем понимать, для того чтобы сохранить свойство растения правильно мы должны знать гомозиготное оно, гетерозиготное, или гомозиготное рецессивное, чтобы ПРЕДСКАЗАТЬ РЕЗУЛЬТАТЫ ДО ТОГО КАК ОНИ ПРОИЗОЙДУТ. Для этого и существует наука – чтобы понять генотип признака, предсказать результат скрещивания и подавить нежелательный признак. Как можно это осуществить? Об этом мы расскажем позже после изучения еще некоторого материала.

Австрийский монах Грегор Мендель (1822-1884) открыл основные правила наследования, анализируя результаты своих наблюдений за размножением растений гороха. Два сорта гороха давали постоянное потомство, если размножение велось строго внутри популяции этого сорта, без вмешательства другой. Потомки обладали следующими постоянными признаками:

 

Растение гороха №1 Растение гороха №2
Ровная оболочка семени Морщинистая оболочка семени
Зеленые семена Желтые семена
Белые цветы Пурпурные цветы
Высокие растения Короткие растения

 

Поскольку внутри каждого сорта гороха не происходило никаких изменений он предположил, что сорта гомозиготны по этим признакам. Поскольку эти сорта были от одного вида гороха Мендель предположил что либо белые цветы рецессивны либо розовые. Он использовал обозначение для генотипа – SS для белых цветов и ss для розовых. Он знал, что они не могут быть Ss потому что одна группа не проявит свойств другой группы, если она замкнутая.

Рассмотрим таблицу Пунне где SS = растение гороха №1 с белыми цветами и ss =  растение гороха №2 с розовыми цветами.

 

  S S
S SS SS
S SS SS

 

То есть все потомки растений №1 будут с белыми цветами (SS).

 

 

  s s
s ss ss
s ss ss

То есть, все потомки растения №2 будут с розовыми цветами (ss).

 

Первое скрещивание:

 

Мендель скрестил два сорта. Результатом стало появление у потомства только белых цветов! Смотрите таблицу:

 

  S S
s Ss Ss
s Ss Ss

 

До этого момента Мендель не знал какое из растений несет доминантный признак. После появления гибридов это стало очевидно: растение №1 содержит доминантный генотип для белых цветов, а растение №2 рецессивный генотип для розовых цветов. Также он выяснил, что растение №2 несет рецессивный генотип для окраса цветка. Это означает что в следующих скрещиваниях с другими сортами гороха он мог бы определить является ли этот признак гомозиготным или гетерозиготным, поскольку он уже определил рецессивный признак (ss).

Помните правила перекрестного теста для определения гомозиготности или гетерозиготности признака? Напомним их еще раз:

1. Растение с доминантным признаком всегда скрещивается с растением с рецессивным признаком.

2. Если ХОТЯ БЫ ОДИН потомок проявляет рецессивный признак, то генотип - гетерозиготный.

3. Если ВСЕ потомки имеют доминантный признак, это гомозиготный доминантный генотип.

4. Чтобы получить достоверные результаты необходимо большое число растений для эксперимента.

 

Итак, Мендель после первого скрещивания получил потомков только с белыми цветами (Ss). После второго скрещивания (двух потомков) он получил такой результат: 

 

  S s
S SS Ss
s Ss ss

 

И получил 3 разных генотипа. Это означает, что:

 

25% потомков гомозиготны по доминантной аллели

50% потомков гетерозиготны и

25% потомков гомозиготны по рецессивной аллели.

 

Итак! В первом скрещивании Мендель не получил рецессивных признаков. Но после скрещивания гибридов, вследствие того, что они оказались гетерозиготными, он получил три различных генотипа.

 

В научных терминах первое скрещивание между растениями называется F1 скрещиванием или поколением F1. Последующее скрещивание этих потомков называется F2 скрещиванием или поколением F2.

Сейчас, имея 3 разных генотипа вы сможете сами построить таблицы Пуннетта для каждого из них, чтобы посмотреть что получится. Сравните полученные вами результаты с тем, что вы уже узнали о процентных соотношениях и посмотрите как это все взаимосвязано. Это очень просто если вы знаете правила… но из любого правила есть исключения.

 

Еще раз о частотах:

 

Нам известно что результат скрещивания 2-х гетерозиготных родителей даст соотношение 50/50 относительно аллелей (помните, что генотип может быть Ss, SS или ss, а аллель или S, или s). Посмотрите на таблицу, где приведены результаты скрещивания двух гетерозиготных родителей и подсчитайте число аллелей.  

 

  S s
S SS Ss
s Ss ss

 

SS

Ss

Ss

ss

То есть, мы видим S S S S (4*S) и s s s s (4*s).

Если мы разделим их, будет очевидней:

 

SS

S

S

 

s

s

ss

 

Напомним еще раз, если скрестить 2 гетерозиготных родителя соотношение аллелей будет 50/50.

 

А сейчас вспомните закон равновесия. Ранее мы описали популяцию с генофондом, в котором сумма всех аллелей равна 100%. Но мы можем иметь другие соотношения, например, 80% имеют S и 20% имеют s, или 40% имеют S и 60% имееют s. Давайте взглянем на эти исключения из правил и посмотрим где именно происходит сбой.

Вот 5 основных причин, вследствие которых нарушается закон равновесия Х-В.

 

  1. Мутация
  2. Миграция генов
  3. Генетическое непостоянство
  4. Не случайное осеменение
  5. Естественный отбор

 

Рассмотрим их подробно.

 

Мутация

Мутация – это изменение в генетическом материале, которое может привести к увеличению наследуемых вариаций в потомстве. В природе, например, к этому может привести подвержение радиации. Результатом будет мутация генетического кода растения и как следствие при размножении внутри этой же популяции появляется новый чужеродный генетический материал. И хотя популяция была закрытой, мутация одного единственного растения будет равносильна вмешательству другого сорта в эту популяцию.

 

Миграция генов

Когда мы говорим о популяции растений мы имеем в виду группу растений, которые размножаются между собой без любого вмешательства извне. Со временем популяция достигает равновесия и остается в равновесном состоянии до тех пор пока туда не мигрирует другая популяция, которая принесет новые гены в генофонд. Это называется интрогрессией. В процессе интрогрессии в популяции проявляется много новых признаков.

 

Генетическое непостоянство:

Если популяция маленькая то равновесие может быть нарушено. Некоторые члены популяции уничтожаются случайным образом. Можно заметить как увеличивается или уменьшается частота появления аллелей.

Неслучайное осеменение и естественный отбор:

Здесь предполагается некоторое внешнее влияние на популяцию. Если некоторые цветы развились быстрее других, тогда они получат семена раньше. Или например если все мужские растения выбросили семена раньше чем успели зацвести некоторые женские растение, получатся синсемиллы. Это означает, что не успевшие опылиться женские растения не внесут свой вклад в генофонд популяции и равновесие снова не будет достигнуто.

 

Благодаря естественному отбору окружающая среда может явиться причиной  проблем для части растений. Если эта часть не выживает, то не происходит ее вклада в генофонд. Таким образом можно до определенной степени контролировать частоту проявления того или иного признака в популяции, а это и есть задача бридинга.

 

Как получить чистый сорт

Размножение каннабиса полностью основано на манипуляциях с частотой появления тех или иных генов. Большинство сортов продающихся уважаемыми бридерами через банки семян постоянны. Это означает что бридер заблокировал определенные гены так что генотипы этих признаков гомозиготны.

Представим, что бридер имеет 2 сорта каннабиса - Master Kush и Silver Haze. Он делает список признаков растений. И помечает «*» те, которые ему нужны для нового сорта.

 

Master Kush Silver Haze
Темно-зеленые листья Светло-зеленые листья *
Hashy запах * Фруктовый запах
Белые цветы Серебристые цветы *
Низкорослые растения * Высокие растения

Это означает, что желаемый сорт, назовем его Silver Kush, будет обладать следующими признаками:

 

Silver Kush
Светло-зеленые листья *
Hashy запах *
Серебристые цветы *
Низкорослые растения *

 

Итак необходимые гены находятся в обоих родителях – в генофонде Master Kush и в генофонде Silver Haze. Мы можем просто скрестить оба сорта и надеяться на лучшее, а можем предварительно рассчитать генотип для каждого признака и полученные результаты применить для получения чистого сорта (IBL).

 

Silver Kush
Светло-зеленые листья *
Hashy запах *
Серебристые цветы *
Низкорослые растения *

 

Первое, что должен сделать бридер, понять генотипы каждого признака, которые присутствуют в его новом сорте. Поскольку бридеру надо обособить 4 признака, то ему необходимо знать 4*2=8 генотипов.

Начнем с бледно-зеленых листьев Silver Haze. Прежде всего надо вырастить как можно больше растений Silver Haze. Если в популяции окажутся не только светло-зеленые листья, тогда признак гетерозиготен. Если нет, то признак является гомозиготным, обозначим его как M. Он может быть либо доминантным MM, либо рецессивным mm.

Если признак гетерозиготен нам надо его обособить прежде, чем идти дальше. Это делается через селективное размножение.

Рассмотрим родителей:

 

  M M
M MM MM
M MM MM

 

Если оба родителя были MM тогда мы не увидим в потомстве листьев других цветов кроме светло-зеленых. Это обособленный признак. Мы знаем, что этот признак всегда будет доминантным в этой популяции, без изменений.

 

  M M
M MM Mm
M MM Mm

 

Если один из родителей был гомозиготен а другой гетерозиготен мы получим две равновероятных вариации в популяции. Одна будет гомозиготной, другая гетерозиготной.

Если оба родителя были гетерозиготны, тогда соотношение будет 25% MM 50% Mm 25% mm.

И хотя сейчас мы можем увидеть вероятности появления генов, мы все еще не знаем светло-зеленый окрас листьев это рецессивный признак или доминантный. Это можно узнать с помощью перекрестного теста.

Мы не будем останавливаться на том что было сказано ранее о перекрестном тесте мы покажем как обособить необходимый нам генотип, который является или MM mm потому что нам нужен чистый признак. Также необходимо сохранить используемые родительские растения.

Чтобы сохранить родительские растения используйте вегетаивное размножение! Один и тот же генетический материал будет передаваться от клона к клону.

 

 

  M m
M MM Mm
m Mm mm

 

Через несколько перекрестных тестов мы сможем добиться обособленности признака, который будет либо рецессивным либо доминантным, а гетерозиготные растения исчезнут из нашей популяции. Независимо от того MM это или mm, мы можем вывести чистый признак путем размножения с другими родителями, которые несут соответственно либо MM либо mm. Так мы должны сделать несколько перекрестных тестов для обнаружения мужского или женского растения с MM или mm для этого признака. Сделав это, мы обосабливаем генотип и внутри популяции он будет постоянен.

Итак, если мы откроем банк семян под названием ООО «Только светло-зеленые листья, а все остальное не постоянно», то наши семена будут давать растения ТОЛЬКО со СВЕТЛО_ЗЕЛЕНЫМИ ЛИСТЬЯМИ, и покупатели будут довольны. В реальности же, они хотят в точности то растение которое выиграло Cannabis Cup в прошлом году…или по-меньшей мере близкое к этому растение. Так что нам необходимо обособить все признаки из-за которых растение получило Cannabis Cup чтобы покупатели порадовались своей покупке. Я надеюсь вы поняли идею.

Сколько тестов необходимо провести, чтобы узнать генотип, точно сказать нельзя. Вы должны использовать обширный отбор растений, чтобы достичь цели, но тем не менее это даст результат в отличие от неселективного размножение наобум. Каждый признак должен быть локализован в популяции, так чтобы популяция стала гомозиготной по этому признаку. Следующий шаг, локализовать остальные признаки в этой же популяции.

Итак, наиболее сложный этап.

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.059 с.