Направление импульса фотона совпадает с направлением светового луча. — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Направление импульса фотона совпадает с направлением светового луча.

2020-07-07 202
Направление импульса фотона совпадает с направлением светового луча. 0.00 из 5.00 0 оценок
Заказать работу

Чем больше частота v, тем больше энергия Е н им пульс р фотона и тем отчетливее проявляются корпускулярные свойства света. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна. Фотоны, соответствующие зеленому свету, имеют энергию 4 • 10-19 Дж.

Тем не менее, в своих замечательных опытах С. И. Вавилов установил, что человеческий глаз, этот точнейший из «приборов», способен реагировать на различие освещенностей, измеряемое единичными квантами.

Корпускулярно-волновой дуализм. Законы теплового излучения и фотоэффекта можно объяснить только на основе представления, согласно которому свет это поток частиц-фотонов.

Однако явления интерференции и дифракции света свидетельствуют и о волновых свойствах света. Свет обладает, таким образом, своеобразным дуализмом (двойственностью) свойств. При распространении света проявляются его волновые свойства, а при взаимодействии с веществом (излучении и поглощении) — корпускулярные. Это, конечно, странно и непривычно, так как частица и волна абсолютно разные физические объекты. Мы не имеем возможности представлять себе наглядно в полной мере процессы в микромире, так как они совершенно отличны от тех макроскопических явлений, которые люди наблюдали на протяжении миллионов лет и основные законы которых были сформулированы к концу XIX в.

Гипотеза де Бройля. Если с электромагнитным полем длительное время связывалось представление о материи, непрерывно распределенной в пространстве, то электроны, напротив, представлялись как некоторые крохотные комочки материи. Это подчеркивалось уже самим названием «частица», постоянно присутствующим рядом со словом «электрон».

Не допускаем ли мы здесь ошибки, обратной той, которая была сделана со светом? Может быть, электрон и другие частицы обладают также и волновыми свойствами. Такую необычную мысль высказал в 1923 г. французский ученый Луи де Бройль.

Предположив, что с движением частиц связано распространение некоторых волн, де Бройль сумел найти длину волны этих волн. Связь длины волны с импульсом частицы оказалась точно такой же, как и у фотонов (см. формулу (11.6)). Если длину волны обозначить через, а импульс — через р, то

Эта знаменитая формула де Бройля — одна из основных в физике микромира.

Предсказанные де Бройлем волновые свойства частиц впоследствии были обнаружены экспериментально. Наблюдалась, в частности, дифракция электронов и других частиц на кристаллах. В этих случаях получалась картина, подобная той, которая характерна для рентгеновских лучей, причем справедливость формулы де Бройля (11.7) была доказана экспериментально.

 

Эти необычные свойства микрообъектов описываются с помощью квантовой механики — современной теории движения микрочастиц. Механика Ньютона здесь в большинстве случаев неприменима.

Фотон — элементарная частица, не имеющая массы покоя и электрического заряда, но обладающая энергией и импульсом. Это квант электромагнитного поля, которое осуществляет взаимодействие между заряженными частицами. Поглощение и излучение электромагнитной энергии отдельными порциями — проявление корпускулярных свойств электромагнитного поля.

Корпускулярно-волновой дуализм — общее свойство материи, проявляющееся на микроскопическом уровне.

ПРИМЕНЕНИЕ ФОТОЭФФЕКТА

Открытие фотоэффекта имело очень большое значение для более глубокого понимания природы света. Но ценность науки состоит не только в том, что она выясняет сложное и многообразное строение окружающего нас мира, но и в том, что она дает нам в руки средства, используя которые можно совершенствовать производство, улучшать условия материальной и культурной жизни общества.

 

С помощью фотоэффекта «заговорило» кино, стала возможной передача движущихся изображений (телевидение). Применение фотоэлектронных приборов позволило создать станки, которые без участия человека изготовляют детали по заданным чертежам. Основанные на фотоэффекте приборы контролируют размеры изделий лучше человека, вовремя включают и выключают мафией и уличное освещение и т. п. Все это оказалось возможным благодаря изобретению особых устройств фотоэлементов, в которых энергия света управляет энергией электрического тока или преобразуется в нее. Вакуумные фотоэлементы. Современный вакуумный фотоэлемент представляет собой стеклянную колбу, часть внутренней поверхности которой покрыта тонким слоем металла с малой работой выхода (рис. 11.4). Это катод 1. Через прозрачное окошко свет проникает внутрь колбы.

В ее центре расположена проволочная петля или диск — анод 2, который служит для улавливания фотоэлектронов. Анод присоединяют 1С положительному полюсу батареи. Фотоэлементы реагируют на видимое излучение и даже на инфракрасные лучи. При попадании света на катод фотоэлемента в цепи возникает электрический ток, который включает или выключает реле. Комбинация фотоэлемента с реле позволяет конструировать множество различных «видящих» автоматов. Одним из них является автомат в метро. Он срабатывает (выдвигает перегородку) при пересечении светового пучка, если предварительно не пропущена карточка. Подобные автоматы могут предотвращать аварии. На заводе фотоэлемент почти мгновенно останавливает мощный пресс, если рука человека оказывается в опасной зоне. С помощью фотоэлементов воспроизводится звук, записанный на кинопленке. Полупроводниковые фотоэлементы. Кроме рассмотренного в этой главе фотоэффекта, называемого более полно внешним фотоэффектом, широко применяется и так называемый внутренний фотоэффект в полупроводниках. На этом явлении основано устройство фоторезисторов — приборов, сопротивление которых зависит от освещенности. Кроме того, сконструированы полупроводниковые фотоэлементы, создающие ЭДС и непосредственно преобразующие энергию излучения в энергию электрического тока. ЭДС, называемая в данном случае фотоЭДС, возникает в области р—n-перехода двух полупроводников при облучении этой области светом. Под действием света образуются пары электрон — дырка. В области р—n-перехода существует электрическое поле. Это поле заставляет неосновные носители полупроводников перемещаться через контакт. Дырки из полупроводника n-типа перемещаются в полупроводник р-типа, а электроны из полупроводника р-типа — в область n-типа, что приводит к накоплению основных носителей в полупроводниках n-и р-типов. В результате потенциал полупроводника p-типа увеличивается, а n-типа уменьшается. Это происходит до тех пор, пока ток неосновных носителей через р—n-переход не сравняется с током основных носителей через этот же переход. Между полупроводниками устанавливается разность потенциалов, равная фотоЭДС.

 

 

Если замкнуть цепь через внешнюю нагрузку, то в цепи пойдет ток, определяемый разностью токов неосновных и основных носителей через р—n-переход (рис. 11.5). Сила тока зависит от интенсивности падающего света и сопротивления нагрузки R. Фотоэлементы с n-переходом создают ЭДС порядка 1—2 В. Их выходная мощность достигает сотен ватт при коэффициенте полезного действия до 20%.

 

Фотоэлементы малой мощности используются, например, в фотоэкспонометрах. Особенно широко применяются полупроводниковые фотоэлементы при изготовлении солнечных батарей, устанавливаемых на космических кораблях (рис. 11.6). К сожалению, пока такие бата- P"^. 11.6 реи довольно дороги. Широко применяются вакуумные и полупроводниковые фотоэлементы, которые создают фото ЭДС.

ДАВЛЕНИЕ СВЕТА

 

Максвелл на основе электромагнитной теории света предсказал, что свет должен оказывать давление на препятствия.

Под действием электрического поля волны, падающей на поверхность тела, например металла, свободный электрон движется в сторону, противоположную вектору (рис. 11.7). На движущийся электрон действует сила Лоренца, направленная в сторону распространения волны. Суммарная сила, действующая на электроны поверхности металла, и определяет силу светового давления.

Для доказательства справедливости теории Максвела было важно измерить давление света. Многие ученые пытались это сделать, но безуспешно, так как световое давление очень мало. В яркий солнечный день на поверхности площадью 1м2 действует сила, равная всего лишь 4 • 10-6 Н. Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900

 

 

Лебедев Петр Николаевич (1866—1912) — русский физик, впервые измеривший давление света на твердые тела и газы. Эти работы количественно подтвердили теорию Максвелла. Стремясь найти новые экспериментальные доказательства электромагнитной теории света, получил электромагнитные волны миллиметровой длины волны и исследовал все их свойства. Создал первую в России физическую школу. Его учениками были многие выдающиеся советские ученые. Имя Лебедева носит физический институт АН СССР (ФИАН).

Прибор Лебедева состоял из очень легкого стерженька на тонкой стеклянной нити, но краям которого были приклеены легкие крылыптки (рис. 11.8). Весь прибор помещался в сосуд, откуда был выкачан воздух. Свет падал на крылышки, расположенные по одну сторону от стерженька. О значении давления можно было судить по углу закручивания нити. Трудности точного измерения давления света были связаны с невозможностью выкачать из сосуда весь воздух (движение молекул воздуха, вызванное неодинаковым нагревом крылышек и стенок сосуда, приводит к возникновению дополнительных вращающих моментов). Кроме того, на закручивание нити влияет неодинаковый нагрев сторон крылышек (сторона, обращенная к источнику света, нагревается сильнее, чем противоположная сторона). Молекулы, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны.

Лебедев сумел преодолеть все эти трудности, несмотря на низкий уровень тогдашней экспериментальной техники, взяв очень большой сосуд и очень тонкие крылышки. В конце концов существование светового давления на твердые тела было доказано, и оно было измерено. Полученное значение совпало с предсказанным Максвеллом. Впоследствии после трех лет работы Лебедеву удалось осуществить еще более тонкий эксперимент: измерить давление света на газы.

Появление квантовой теории света позволило более просто объяснить причину светового давления. Фотоны, подобно частицам вещества, имеющим массу покоя, обладают импульсом. При поглощении их телом они передают ему свой импульс. Согласно закону сохранения импульса импульс тела становится равным импульсу поглощенных фотонов. Поэтому покоящееся тело приходит в движение. Изменение импульса тела означает согласно второму закону Ньютона, что на тело действует сила.

Опыты Лебедева можно рассматривать как экспериментальное доказательство того, что фотоны обладают импульсом.

Хотя световое давление очень мало в обычных условиях, его действие тем не менее может оказаться существенным. Внутри звезд при температуре в несколько десятков миллионов Кельвинов давление электромагнитного излучения должно достигать громадных значений. Силы светового давления наряду с гравитационными силами играют значительную роль во внутризвездных процессах.

Давление света согласно электродинамике Максвелла возникает из-за действия силы Лоренца на электроны среды, колеблющиеся под действием электрического поля электромагнитной волны. С точки зрения квантовой теории давление появляется в результате передачи телу импульсов фотонов при их поглощении.

 

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.