Арегатирование  машинно-тракторных агрегатов — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Арегатирование  машинно-тракторных агрегатов

2020-06-02 170
Арегатирование  машинно-тракторных агрегатов 0.00 из 5.00 0 оценок
Заказать работу

Машины и орудия для поверхностной обработки почвы

 

Бороны

При организации работы агрегатов стремятся, чтобы фактическая производительность в большей мере соответствовала теоретической. Для этого максимально используют конструктивную ширину захвата, работают на повышенных скоростях и наилучшим образом используют время смены, а также организуют двух- и трехсменную работу агрегатов, особенно в напряженные периоды. Важное значение имеет своевременное проведение мероприятий по поддержанию надежного технического состояния машин, строгого соблюдения периодичности выполнения операций очистки, смазки, проверки состояния отдельных узлов, рабочих органов, передач и их предупредительных регулировок.

Для улучшения технического обслуживания машин применяют групповую работу пахотных агрегатов.

Вороны применяют для рыхления верхнего слоя почвы, выравнивания поверхности поля, разрушения почвенной корки, крошения комьев почвы, уничтожения сорняков, заделки семян и удобрений. Бороны бывают зубовые и дисковые.

Зубовые бороны. Рабочий орган зубовых борон - зуб, работающий как двугранный клин: передним ребром раскалывает (разрезает) почву, а боковыми гранями раздвигает, сминает и перемешивает ее частицы, разрушает крупные комья почвы. Зубья закрепляют на жесткой или на шарнирной раме, составленной из отдельных, шарнирно соединенных между собой звеньев. Шарнирную раму имеют сетчатые и луговые бороны. Такие бороны хорошо приспосабливаются к микрорельефу поля и обеспечивают равномерное заглубление всех зубьев.

По конструкции зубья бывают прямые (рис. Ш.1, А, Б, В, Д и Е), лапчатые Г и изогнутые Ж с пружинящей стойкой. По форме сечения различают зубья с квадратным А, круглым Б, овальным В и прямоугольным Е, Ж сечением. Конец зуба с квадратным сечением имеет косой срез. Зубья, расположенные косым срезом в противоположную к направлению движения сторону, заглубляются больше, чем установленные косым срезом по ходу движения, так как во втором случае вертикальная составляющая реакции почвы возрастает и стремится вытолкнуть зуб из почвы.

Зубовыми боронами обрабатывают почву на глубину 3 - 10 см. Диаметр комков после обработки не должен быть более 5 см, глубина борозд 3 - 4 см. Зубовыми и сетчатыми боронами весной обрабатывают посевы озимых культур - рыхлят верхний слой почвы и удаляют отмершие растения.

Количество поврежденных растений при этом не должно превышать 3%. Луговыми боронами прочесывают травостой, разрезают дернину, измельчают и растаскивают кротовины на лугах и пастбищах.

Зубовая борона составлена из прямоугольных 2 (рис. III1, а) и корытообразных 1 планок, на пересечении которых закреплены зубья 3. Зубья на раме располагают так, чтобы каждый зуб проводил свою бороздку. Расстояние между бороздками зависит от типа бороны и изменяется от 22 до 49 мм. Чтобы борона не забивалась комками и растительными остатками, соседние зубья в одном ряду закрепляют на расстоянии не менее 15 см друг от друга. Квадратные зубья располагают ребрами по направлению движения, овальные - закругленной стороной, прямоугольные - узкой или широкой гранями.

Агрегатируют бороны посредством сцепок СГ-21, С-18, и др. с тракторами класса 9-60 кН или присоединяют к плугам, культиваторам и сеялкам. Каждая секция бороны снабжена прицепным устройством 4 в виде крючков, к которым присоединяют поводки или цепи.

Глубина обработки почвы зависит от длины соединительных поводков, а для борон с прямоугольными зубьями - и от расположения косого среза зуба по отношению к направлению движения.

В зависимости от давления на один зуб, которое определяют делением веса звена на количество зубьев, различают бороны тяжелые, средние и легкие. Давление на один зуб тяжелой бороны 20 - 30 Н, средней 10 - 20 Н, легкой 5 - 10 Н. Технические характеристики борон приведены в таблице III. 1.

Тяжелая зубовая борона БЗТС-1,0 (рис. Ш.1, а) применяется для дробления глыб и рыхления пластов после вспашки, вычесывания сорняков, обработки лугов и пастбищ.

Средняя зубовая борона БЗСС-1,0 предназначена для рыхления и выравнивания поверхности поля, уничтожения всходов сорняков, разбивания комков, заделки удобрений, боронования всходов зерновых и технических культур.

Легкие посевные трехзвенные бороны ЗБП-0,6 и ЗОР-07 служат для боронования посевов, разрушения поверхностной корки, заделки семян и минеральных удобрений, выравнивания поверхности поля перед посевом.

Навесная сетчатая борона БСО-4(рис.III.1,б) предназначена для рыхления верхнего слоя почвы и уничтожения сорняков на посева в период появления всходов, для боронования гребневых посадок картофеля. Секция бороны составлена из рамки Ц, к которой цепями 13 прикреплено сетчатое полотно 12. Поэтому рабочие органы БСО-4 (заостренные зубья - концы шарнирно соединенных зубовых звеньев) хорошо приспосабливаются к неровностям поля. Звенья изготовляют из круглых стальных прутков с заостренными или тупыми концами-зубьями (рис. ШЛ, Д).

Секции борон присоединяют к брусу навески НУБ-4,8 тягой 10 у, цепями 8. Цепи удерживают секции в поднятом положении. Брус нужно располагать так, чтобы передние и задние ряды зубьев бороны заглублялись одинаково. Цепи должны провисать, что позволяет секциям бороны копировать рельеф поля.

Шлейф-борону IIIБ-2,5 (рис. 1111, в) применяют для весеннего боронования с целью закрытия влаги и разравнивания гребней на полях, вспаханных под зябь. К ваге 16 присоединены цепочками два звена. Каждое звено имеет нож 17 для срезания гребней, грабли 18 для рыхления почвы и шлейф 14 из соединенных цепочками 13 стальных уголков для выравнивания поверхности почвы. Для регулирования глубины обработки рычагом 15 изменяют угол наклона ножа. Шлейфование проводят под углом к свальным гребням.

Шарнирно-секционная навесная пружинная борона БП-8 предназначена для вычесывания сорняков и рыхления поверхностного слоя почвы, засоренной камнями. БП-8 составлена из основной, двух боковых промежуточных и двух крайних секций. Боковые и крайние секции можно отъединять и изменять ширину захвата бороны в пределах 8,4; 6; 3,6 и 3 м. Борона снабжена зубьями с пружинными стойками (рис. 1111, ок). Зубья закреплены на поперечных брусьях рамы в четыре ряда. Для выравнивания поверхности поля к БП-8 дополнительно можно присоединять заравниватель, роторную и пружинную боронки.

Дисковые бороны. Дисковые бороны бывают полевые, садовые (легкие) и болотные (тяжелые). Легкие полевые бороны применяют для обработки зяби, послепахотного рыхления задернелых пластов, лущения стерни, освежения слабо задернелых лугов. Садовые бороны применяют для обработки почвы в междурядьях садов. Глубина обработки до 10 см. Тяжелые бороны предназначены для разделки задернелых пластов после вспашки целинных и залежных земель, дискования заболоченных почв, обработки лугов и пастбищ, заделки удобрений и пожнивных остатков. Глубина обработки до 20 см.

Рабочий орган легкой дисковой бороны - стальной заостренный сферический диск диаметром 450 или 510 мм (рис. III.2, в). Тяжелые дисковые бороны имеют вырезные диски (рис. Ш.2, г), которые хорошо заглубляются в почву и интенсивно измельчают растительные остатки.

Несколько дисков, смонтированных на квадратной оси 5, образуют батарею. Диски на оси располагают на некотором расстоянии друг от друга, между ними ставят распорные шпульки 7. Ось устанавливают в подшипниках 11, и батарея во время движения вращается.

Батареи закрепляют на раме в два ряда под углом к направлению движения. Передние батареи работают вразвал, задние - всвал. Для лучшего крошения почвы диски задних батарей смещены относительно дисков передних. Угол а между плоскостью вращения диска и линией направления движения орудия называют углом атаки. Его можно изменять от 0 до 21°. При обработке сухих и твердых почв угол атаки увеличивают, при дисковании влажных и легких почв уменьшают. При движении бороны диски, сцепляясь с почвой, вращаются,

Режущая кромка диска отрезает полоску почвы и поднимает ее на внутреннюю сферическую поверхность. Затем почва падает с некоторой высоты и отводится диском в сторону. В результате перемещения по диску и падения почва крошится, частично оборачивается и перемешивается. С увеличением угла атаки диски глубже погружаются в почву, крошение ее возрастает. Глубину обработки регулируют изменением угла атаки и давления дисков на почву. Давление регулируют изменением массы балласта или силы сжатия нажимных пружин.

Дисковые бороны по сравнению с зубовыми меньше забиваются, перерезают тонкие корни и перекатываются через толстые: Для работы на каменистых почвах диски непригодны: лезвия их выкрашиваются. Дисковые бороны бывают прицепные и навесные.

Навесная двухследная дисковая борона БДН-3 (рис. III2) имеет четыре батареи с изменяемым числом дисков. Ширина захвата бороны 3 или 2 м. В первом случае на трех батареях установлено по девять дисков, а на задней левой - десять. Дополнительный диск рыхлит необработанную полоску, образовавшуюся между крайним внутренними дисками передних батарей. Во втором случае три батарее имеют по шесть дисков, а четвертая - семь. Перемещая по брусу кронштейны 8 и фиксируя их штырями 9, можно установить батарею с углами атаки дисков 12, 15, 18 и 21°. Для переоборудования бороны на ширину захвата 2 м боковые брусья сближают, смещая их по поперечным брусьям, и присоединяют батареи с меньшим числом дисков.

Глубину обработки регулируют изменением угла атаки дисков и массы балласта, загружаемого в ящики.

Прицепная дисковая борона БД-10 предназначена для послепахотного рыхления пластов, предпосевной обработки зяби, лущении стерни на глубину до 10 см, выравнивания поверхности поля на легких и средних почвах; агрегатируют ее с тракторами К-700, К-700А, К-70: Т-150 и Т-150К.

Борона состоит из четырех секций, гребнереза, самоустанавливающихся колес и гидравлической системы.

Батареи с десятью дисками диаметром 450 мм крепятся к четырем боковым секциям, расположенным симметрично под углом к продольным от оси бороны. Рамки секций шарнирно соединены с рамой; наружные концы их опираются на самоустанавливающиеся колеса, связанные параллелограммным механизмом с гидроцилиндром для перевода в транспортное или рабочее положение.

Шарнирное соединение рамок секций обеспечивает копирование рельефа почвы. Секции рабочих органов можно установить с углами атаки 12, 15, 18 и 21°.

Ротационная мотыга МВН-2,8 предназначена для весеннего рыхления почвы на озимых посевах и предпосевной обработки с целью уничтожения почвенной корки и сорной растительности.

На соединительный брус 4 мотыги (рис. IIL3) навешены три батареи 6, шарнирно соединенные между собой скобами 7. В транспортном положении батареи удерживаются тягой 5. Рабочие органы МВН-2,8 - игольчатые диски - имеют вогнутые иглы с острыми концами. Диаметр дисков по концам игл 450 мм. В каждой батарее четырнадцать дисков, свободно надетых на оси. Сцепляясь с почвой, диски вращаются, делают на 1 м2 150 уколов, полностью разрушая почвенную корку. Для уменьшения повреждений культурных растений при обработке посевов батареи крепят так, чтобы иглы были направлены выпуклой стороной по направлению движения (диск вращается по направлению стрелки К). Для интенсивного рыхления почвы и уничтожения сорняков батареи разворачивают на 180° (диск вращается по направлению стрелки М).

Батареи крепят к брусу так, чтобы диски располагались в шахматном порядке. Изменяя массу балласта на площадке 3, регулируют глубину обработки до 9 см. Ширина захвата мотыги 2,8 м. Агрегатируют ее с трактором класса 9 кН

Лущильники

Лущение - обработка почвы на небольшую глубину, предшествующая вспашке. Проводят его с целью рыхления почвы, сохранения влаги, заделки семян сорняков и пожнивных остатков, борьбы с вредителями и болезнями сельскохозяйственных растений. Лущение снижает затраты механической энергии на вспашку. Лущат почву дисковыми и лемешными лущильниками. Рабочий орган дисковых лущильников - сферический диск, лемешных - отвальный корпус шириной захвата 25 см. Диски лущильников располагают так, чтобы плоскость вращения дисков составляла с направлением движения угол атаки 30 - 35°. В таком положении диски хорошо подрезают и крошат пласты почвы, заделывают в верхний слой пожнивные остатки и семена сорняков.

Дисковым лущильником лущат стерню зерновых культур на участках, засоренных преимущественно корневищными и другими многолетними сорняками. Уплотненную почву после уборки кукурузы и подсолнечника и участки, засоренные корнеотпрысковыми сорняками, обрабатывают лемешным лущильником.

Лущение стерни дисковыми лущильниками проводят на глубину 4 - 10 см, лемешными - 6 - 12 см. Отклонение средней глубины обработки от заданной не должно превышать ±2 см. Верхний слой почвы после рыхления должен быть мелкокомковатым, а поверхность взлущенного и дискованного поля должна быть слитной и ровной. Развальная борозда в стыке средних батарей дисковых орудий не должна превышать глубину обработки почвы. Сорные растения должны быть подрезаны полностью. Поля лущат поперек направления движения уборочных агрегатов на скорости не более 10 км/ч, так как с увеличением скорости агрегата глубина лущения уменьшается.

Технические характеристики лущильников приведены в таблице III.2

Прицепной дисковый лущильник ЛДГ-5 предназначен для лущения почвы после уборки зерновых культур, для ухода за парами, разделки пластов, размельчения глыб после вспашки.

К раме 6 лущильника (рис. IIL4), опирающейся на колеса 7, присоединены брусья 2 с четырьмя дисковыми батареями 13, гидравлический механизм подъема батарей 4 и заравниватель 15.

Брусья 2, шарнирно присоединенные к раме, опираются на колеса 1. Брусья связаны с рамой раздвижными тягами 3 и 8, изменением длины которых регулируют угол атаки дисков. С увеличением угла атаки диски больше заглубляются. Кроме того, глубину обработки регулируют сжатием пружины на штанге 16, а также перестановкой по вертикали передних концов рамок 12, которыми батареи присоединяются к брусьям.

Для лущения стерни диски устанавливают с углами атаки 30 - 35°, при использовании ЛДГ-5 в качестве бороны угол атаки дисков уменьшают до 15 - 25°.

При регулировке угла атаки расстояние между дисками средних секций изменяется. Для сохранения его брусья 2 раздвигают или сдвигают. Плоскость вращения колес должна совпадать с направлением движения агрегата, для этого при изменении угла атаки изменяют угол между брусьями 2 и полуосями 10 колес. Против регулировочных отверстий на тягах, брусьях и полуосях крайних колес нанесены цифры, соответствующие углам атаки дисков.

Рамку 12 батарей можно переставлять в отверстиях понизителей П. Если рамку закрепить с использованием нижних отверстий ползунов 19 (рис. IIL4, 6) понизителей, диски заглубляются. Вращением болта 18 понизителя можно перемещать ползун 19, поднимая или опуская ушки рамки. Понизителями пользуются для установки всех дисков батарей на одинаковую глубину обработки.

Диски очищают от почвы чистиками, которые крепят так, чтобы они, не касаясь дисков, хорошо очищали их.

Заравниватель 15 заделывает разъемную борозду после прохода лущильника.

Механизм гидроподъемника батареи состоит из полосы 14, присоединенной к рамкам двух соседних батарей, и установленного на каждом брусе 2 гидроцилиндра 4, шток которого соединен с рычажной вилкой и нажимной штангой 16 с пружиной.

При подаче масла от гидросистемы трактора в нижнюю полость цилиндра шток втягивается в цилиндр и через рычажную вилку поднимает батареи. При опускании батареи шток гидроцилиндра выдвигается, рычажная вилка сжимает пружину и через соединительную полосу 14 принудительно заглубляет в почву диски двух батарей. На твердых почвах сжатие пружин на штангах 16 увеличивают, на легких уменьшают.

Агрегатируют лущильник с тракторами класса 14 - 20 кН.

Лущильники гидрофицированные дисковые ЛДГ-10, ЛДГ-15 и ЛД-20 устроены аналогично лущильнику ЛДГ-5.

Для подъема и принудительного заглубления дисков гидрофицированные лущильники оборудованы механизмом гидроуправления (рис. III5). Каждая батарея рамкой 9 в двух точках шарнирно крепится к ползунам понизителей 8 и двумя штангами 2 подвешена к рычагам 3, закрепленным на трубе 4 подъема секции.

При подаче масла в правую полость гидроцилиндра 6 шток выходит из цилиндра, при помощи рычага 5 поворачивает трубу 4 и батареи поднимаются. Чтобы опустить батареи, масло подают в левую полость гидроцилиндра, и рычаги 3 опускают батареи. При этом рычаги 3, сжимая пружины 12, заглубляют диски в почву и обеспечивают устойчивость их работы.

Глубину обработки регулируют ограничением хода штока гидроцилиндра и изменением сжатия пружин 12, переставляя быстросъемные шплинты 11 по отверстиям штанг 2.

Для надежного заглубления дисков при обработке тяжелой по механическому составу почвы лущильник оборудуют балластным ящиком.

Гидрофицированные лущильники могут быть укомплектованы сферическими или плоскими дисками. Сферические диски не рекомендуется применять в районах возникновения ветровой эрозии. Для закрытия влаги на стерневом поле применяют лущильники с плоскими дисками, меньше оборачивающими и распыляющими почву, чем сферические.

Полунавесной лемешный плуг-лущильник ППЛ-10-25 предназначен для лущения стерни на глубину до 12 см на полях, засоренных корнеотпрысковыми и корневищными сорняками, для предпосевной обработки почвы, для обработки парового поля на глубину 6 - 14 см и вспашки легких почв с удельным сопротивлением до 6 Н/см2 на глубину 16 - 18 см. Агрегатируют плуг-лущильник с трактором класса 30 кН

Корпуса 1 (рис. IIL6) лущильника смонтированы на раме, опирающейся на два ходовых 3 и два опорных 17 колеса. Рама составлена из двух шарнирно соединенных секций: передней 2 с прицепом 16 и задней 5. На передней секции рамы установлена коленчатая ось 4 с двумя ходовыми колесами 3. Правое ходовое колесо при работе лущильника находится выше вспаханной поверхности поля, а левое служит опорой для центра рамы. Передняя и задняя секции опираются во время работы на колеса 17.

Такая расстановка колес обеспечивает хорошее копирование рельефа поля, а также одинаковую глубину обработки и ширину захвата каждого корпуса. Глубину обработки регулируют перемещением колес 5 и 17 относительно рамы. Положение ходовых колес 3 изменяют вращением штурвала 8.

Корпус гидроцилиндра 14 шарнирно прикреплен к поводку 15 свободного хода, а шток - к двуплечему рычагу 13. Нижнее плечо рычага тягой 11 соединено с кронштейном 10, закрепленным на оси 4. Для подъема задней секции рамы служит штанга б, связанная с механизмом подъема через закрепленный на оси кулак. Штанга соединен с кулаком через пружинный догружатель 9 с регулировочной гайкой. Для перевода плуга-лущильника в транспортное положение необходимо, рычаг управления гидроцилиндром 14 установить так, чтобы масло поступало в правую полость цилиндра.

Заднюю секцию можно отъединить и использовать переднюю секцию как самостоятельное орудие для агрегатирования с трактором класса 14 кН. ППЛ-10-25 имеет корпуса для работы на скоростях 7-9 или 12 км/ч.

Катки

Почву уплотняют катками до и после посева. До посева прикатыванием выравнивают поверхность поля, разрушают глыбы, неосевшую, поздно обработанную почву. Прикатыванием после посева уплотняют верхний слой почвы, контакт семян с почвой улучшается, увеличивается подток влаги из нижних горизонтов, и семена быстрее прорастают. В засушливых районах прикатыванием снижают потери влаги за счет конвекционно-диффузного тока (испарения), интенсивнее которого больше при рыхлой почве и меньше при уплотненной.

На прикатанном поле повышается равномерность хода агрегатов, облегчается их вождение, рабочая скорость может быть больше.

Кольчато-шпоровый трехсекционный каток ЗККШ-6 (рис. III.8, а) применяют для рыхления верхнего и уплотнения подповерхностного слоя почвы, разрушения корки, комков и выравнивания вспаханного поля.

Каждая секция катка составлена из двух расположенных друг за другом батарей с балластными ящиками. На ось передней батареи свободно надеты поочередно через промежуточные втулки шесть, а на ось задней батареи - семь стальных литых дисков со шпорами диаметром 520 мм. Диски задней батареи смещены на половину шага относительно дисков передней батареи, что облегчает самоочищение катка от налипшей между дисками почвы. Регулировкой массы балласта можно изменять удельное давление на 1 см захвата от 27 до 47 Н Рабочая скорость катка до 13 км/ч, ширина захвата трех секций 6,1 м, одной 2,09 м.

Кольчато-зубчатый каток ККН-2,8 (рис. III.8, б) предназначен для выравнивания поверхности поля, уплотнения на глубину до 7 см подповерхностного и рыхления на глубину 4 см поверхностного слоев почвы. Его можно применять в агрегате со свекловичными сеялками и культиваторами.

На ось катка, прикрепленную к раме, свободно надеты колеса: десять клинчатых диаметром 350 мм и девять зубчатых диаметром 366 мм. Давление катка на 1 см ширины захвата 25 Н. Ширина захвата 2,7 м.

Каток борончатый навесной КБН-3 (рис. III.8, в) служит для разрушения почвенных комков и прикатывания почвы перед посевом с одновременным рыхлением поверхностного слоя, а также для разрушения почвенной корки на посевах.

На раме каждой из пяти секций крепятся подшипники для двух каточков. На цилиндрической поверхности каточка по винтовой линии расположены зубья диаметром 16 мм.

Секции подвешивают к поперечному брусу на цепях в шахматном порядке. В переднем ряду три секции, в заднем две. Рамки задних и передних секций соединены шарнирно. Ширина захвата 3,25 м. Каток навешивают на тракторы класса 9 - 14 кН.

Водоналивной гладкий каток ЗКВГ-1,4 (рис. IIL8, г) предназначен для уплотнения поверхностного слоя почвы до или после посева, прикатывания зеленых удобрений перед запашкой. Каток трехсекционный; каждая секция имеет вращающийся гладкий пустотелый цилиндр диаметром 700 мм, длиной 1400 мм и емкостью 500 л. Цилиндры заполняют водой. Изменением количества воды регулируют удельное давление катка на почву в пределах от 23 до 60 Н на 1 см ширины захвата катка. Для очистки цилиндров от прилипшей почвы служат чистики, прижимаемые к поверхности цилиндров пружинами. Ширина захвата катка 4 м. Каток агрегатируют с тракторами класса 9 - 14 кН

Для прикатывания почвы до и после посева сахарной свеклы применяют легкие водоналивные катки СКГ-2,1, СКГ-2, СКГ-2-2, СКГ-2-3 с гладкими пустотелыми цилиндрами длиной 2,7 м и емкостью 100 л.

Арегатирование  машинно-тракторных агрегатов

 

Правильное комплектование сельскохозяйственных агрегатов — один из основных факторов, определяющих эффективность использования машин.

От комплектования агрегатов зависит качество выполняемой работы, производительность агрегата, а следовательно, и сроки проведения. Кроме того, при правильном комплектовании агрегата до минимума снижается расход топлива и себестоимость единицы механизированных работ, повышается эффективность капиталовложений в машинный парк.

Основными агротехническими требованиями к выполнению производственного процесса, которые должны быть удовлетворены при комплектовании агрегатов, являются последовательность обработок, величина разрыва во времени между ними, отсутствие пропусков (огрехов) и потерь (при уборке).

 Наибольшая производительность и экономичность сельскохозяйственных агрегатов при определенном Сочетаний, условий достигается при оптимальном соотношении параметров энергетической и рабочей части системы.

При комплектовании агрегата необходимо учитывать не только характеристику двигателя, тяговые свойства трактора и тяговые сопротивления машин-орудий, но и характер колебаний сопротивлений движению агрегата и скоростной режим, обеспечивающий высокое качество работы.

Скорость движения агрегатов на полевых процессах — один из основных факторов, определяющих качество технологического процесса и производительность агрегата.

Правильный выбор скоростного режима зависит прежде всего от характера и сущности технологического процесса.

Как показывают наблюдения и специальные исследования, скоростной режим агрегата является одним из главных факторов регулирования качества работы почти на всех процессах.

Правильно выбирая скорость движения с учетом свойств обрабатываемого материала (почва, растения и др.), технических возможностей машин и их эксплуатационных свойств, можно достигнуть наиболее высокого качества выполнения процесса.

Современные скоростные энергонасыщенные тракторы обеспечивают выбор оптимального скоростного режима работы агрегата.

При агрегатировании необходимо также учитывать внешние производственные условия: размеры обрабатываемых полей, длину гонов, рельеф местности, почву и др. Агрегат может быть составлен вполне правильно с точки зрения использования тяговой мощности трактора, однако при использовании на полях с короткими гонами его применение может оказаться не эффективным из-за больших потерь времени на повороты по сравнению с другим агрегатом, имеющим хотя и худшие показатели по использованию мощности, но значительно лучшие по маневренности.

Одним из основных показателей, влияющих на производительность, является ширина захвата агрегата.

Соответственно изменению производительности меняются и прямые издержки при работе агрегатов разного состава и ширины захвата при разной длине гонов.

Как видно, каждой длине гона соответствует наиболее экономичная ширина захвата агрегата, обеспечивающая наименьшие прямые издержки.

На основании обобщения опыта хозяйств наиболее целесообразно по критерию производительности и экономичности применение агрегатов определенной ширины захвата.

Следует иметь в виду, что при затруднениях с переездами агрегатов с поля на поле приходится уменьшать габариты агрегатов по ширине против указанных в таблице значении, чтобы обеспечить удовлетворительную проходимость.

При установлении ширины захвата агрегата необходимо учитывать и техническую надежность входящих в его состав машин, что также может ограничивать возможную ширину захвата.

Чем больше используемая среднесменная мощность, тем выше производительность агрегата. Поэтому возможна полная загрузка трактора — один из главных резервов производительности агрегата. Однако загрузка трактора имеет определенные пределы, ограничиваемые рядом факторов,

Прежде всего это возможная (потенциальная) характеристика трактора, ограничивающая его тяговую мощность. Наибольшей производительности можно ожидать от такого агрегата, который обеспечивает загрузку, близкую к наибольшей тяговой мощности. Современные тракторы позволяют работать на скоростях от 7 до 15 км/ч.

Важное значение имеет изменчивость тяговых сопротивлений машин-орудий по скорости.

Исследованиями установлено, что с увеличением скорости движения тяговое сопротивление сельскохозяйственных машин и орудий возрастает. Интенсивность роста сопротивления зависит от типа рабочих органов, характера технологического процесса и скорости.

С повышением скорости движения увеличивается не только среднеарифметическая величина нагрузки, но в еще большей степени ее колебания, характеризуемые основным отклонением — стандартом.

По данным специальных исследований, при увеличении скорости движения с 5 до 12 км/ч резко возрастает и степень неравномерности сопротивлений.

Эти эксплуатационные особенности тракторов и сельскохозяйственных машин необходимо учитывать при комплектовании агрегатов.

В производственных условиях агрегатирование производится тяговыми ступенями. Под тяговой ступенью понимается тяговое сопротивление неделимого элемента: корпуса— при вспашке (0,35 м); звена—при бороновании (1,0 м); батареи—при лущении (1,5—2 м); пальцевого бруса — при кошении (2 м); отдельной машины — в остальных случаях (3,6—6,0 м).

После выбора машин (орудий) для выполнения заданного технологического процесса расчет агрегата ведется в следующей последовательности.
1. Устанавливают допустимые пределы скорости движения агрегата, обеспечивающие выполнение агротехнических требований.
2. Определяют тяговое сопротивление машины (орудия).
3. Намечают передачу, на которой сможет работать трактор в выбранных пределах скоростей.
4. Определяют возможную ширину захвата и число машин (орудий) или тяговых ступеней в агрегате.
5. При необходимости подбирают соответствующую сцепку.
6. В соответствии с принятым составом агрегата уточняют его тяговое сопротивление.
7. Проверяют коэффициент загрузки трактора и двигателя.
8. При необходимости вносят необходимые коррективы в состав агрегата или в режим его работы.

При расчете состава агрегата приходится несколько недогружать трактор, оставляя некоторый резерв (3—20% по тяге) для преодоления возможных возрастаний сопротивлений в процессе работы. Величина этого запаса зависит от вида процесса, условий работы и динамических свойств трактора, прежде всего запаса крутящего момента его двигателя.

Для тракторов, рассчитанных на скорости движения свыше 8—9 км/ч, приходится создавать больший запас тягового усилия, так как в диапазоне 9—15 км/ч сопротивление растет быстрее и сопровождается большим колебанием нагрузки.

Определив число машин (орудий) в агрегате, подбирают сцепку.

Установив состав агрегата, необходимо проверить фактическую загрузку трактора при пробной работе. Проверку, особенно энергоемких пахотных агрегатов, производят перед началом работы на каждом новом поле, а также при изменении состояния (например, влажности) почвы. Такая проверка позволяет наиболее точно подогнать тяговую нагрузку к желательной величине.

Фактическую нагрузку двигателя устанавливают путем подсчета числа оборотов ведущего колеса или звездочки гусеницы за единицу времени (минуту).

Снижение оборотов допустимо лишь в периоды кратковременных перегрузок.

Комплексные агрегаты предназначены для выполнения совмещенных операций. При комплектовании комплексных агрегатов, включающих технологически разнородные машины (орудия) и выполняющих совмещаемые операции, необходимо также учитывать оптимальные по качеству работы значения скоростных режимов для разных машин (орудий).

Комплектование разнородных машин в одном агрегате допустимо лишь при условии, если оптимальные скоростные диапазоны отличаются незначительно. Например, по качеству работы не всегда целесообразно составление убо-рочно-лущильных агрегатов: при уборке высокоурожайных хлебов допустимая по величине потерь подача ограничивает скорость движения, а это резко снижает качество лущения. На засоренных участках одновременные культивация, боронование и посев могут резко снизить качество вследствие частых забиваний рабочих органов культиваторов, борон и сеялок. Существенное значение для качества работы имеет и способ соединения машин (орудий) в агрегате, в частности параллельное (шеренговое) или последовательное (эшелонированное) расположение машин.

В первом случае так называемый технологически-асимметричный агрегат создает разрыв во времени между разными видами совмещаемых операций в пределах одного цикла и требует движения с односторонними поворотами.

Во втором случае (технологически-симметричный агрегат) совмещенные операции выполняются одна за другой с минимальным разрывом во времени, при этом возможно движение как челночным, так и фигурным способами с правыми и левыми поворотами.

В производственных условиях широкое применение находят агрегаты для одновременной вспашки, каткования и боронования; культивации и боронования; культивации и внесения жидких удобрений; посева и боронования; рыхления и подкормки пропашных культур; кошения и сгребания и др.

В последнее время в связи с увеличением энергонасыщенности тракторов разрабатываются комплексные агрегаты, позволяющие совмещать три и более операций.

В Калининской области успешно применяют комплексные агрегаты для предпосевной обработки почвы (рыхлители— выравниватели—катки РВК), совмещающие операции рыхления, планировки (выравнивания) и прикаты-вания. Использование их не только повышает производительность труда в 1,8—2 раза, но и благодаря высокому агротехническому фону увеличивает урожайность пропашных культур на 2—3 ц с гектара.

Дальнейшим развитием технологии совмещенных операций явилось применение агрегатов для внесения жидких удобрений, рыхления, выравнивания и прикатывания.

В совхозе «Калининский» на тяжелых почвах успешно используют комплексный агрегат, одновременно выполняющий рыхление, прикатывание, повторное рыхление, выравнивание поверхности, повторное кольчато-шпоровое прикатывание и посев зерновых культур. Вследствие значительной длины выезда такого агрегата (около 10 м) его целесообразно применять при длине гонов не менее 500 м.

Совмещение операций с учетом производственных условий дает высокую эффективность.

Эксплуатационные издержки при работе агрегатов зависят от сезонной загрузки. Эксплуатационные издержки, как известно, складываются из постоянных затрат, не зависящих от наработки (загрузки) и переменных затрат, пропорциональных наработке:

Таким образом, при объеме работ на вспашке (годовая наработка) более 697 га экономически целесообразно использовать трактор К-700, а при наработке менее 697 га — трактор Т-150.


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.098 с.