Свойства вероятности и следствия из них. — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Свойства вероятности и следствия из них.

2020-04-03 210
Свойства вероятности и следствия из них. 0.00 из 5.00 0 оценок
Заказать работу

Существуют различные способы введения этой меры. Согласно аксиоматическому подходу, существование такой меры для каждого события постулируется, а свойства определяются совокупностью аксиом:

 

Каждому событию А соответствует неотрицательное действительное число Р(А), называемое вероятностью события А.

Вероятность достоверного события равна единице, то есть.

Если А и В – несовместные события, то Р(А+В) = Р(А) + Р(В).

 

Классическая вероятность. Дискретное вероятностное пространство. Пример.

Классическое определение

Классическое «определение» вероятности исходит из понятия равновозможности как объективного свойства изучаемых явлений. Равновозможность является неопределяемым понятием и устанавливается из общих соображений симметрии изучаемых явлений. Например, при подбрасывании монетки исходят из того, что в силу предполагаемой симметрии монетки, однородности материала и случайности (непредвзятости) подбрасывания нет никаких оснований для предпочтения «решки» перед «орлом» или наоборот, то есть выпадение этих сторон можно считать равновозможными (равновероятными).

Наряду с понятием равновозможности в общем случае для классического определения необходимо также понятие элементарного события (исхода), благоприятствующего или нет изучаемому событию A. Речь идет об исходах, наступление которых исключает возможность наступления иных исходов. Это несовместимые элементарные события. К примеру при бросании игральной кости выпадение конкретного числа исключает выпадение остальных чисел.

Классическое определение вероятности можно сформулировать следующим образом:

Вероятностью случайного события A называется отношение числа n несовместимых равновероятных элементарных событий, составляющих событие A, к числу всех возможных элементарных событий N:

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству 0≤P(A)≤1

 

Например, пусть подбрасываются две кости. Общее количество равновозможных исходов (элементарных событий) равно 36 (так как на каждый из 6 возможных исходов одной кости возможно по 6 вариантов исхода другой). Оценим вероятность выпадения семи очков. Получить 7 очков можно лишь при следующих сочетаниях исходов броска двух костей: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1. То есть всего 6 равновозможных исходов, благоприятствующих получению 7 очков, из 36 возможных исходов броска костей. Следовательно, вероятность будет равна 6/36 или, если сократить, 1/6. Для сравнения: вероятность получения 12 очков или 2 очков равна всего 1/36 — в 6 раз меньше.

Определение вероятностного пространства

При построении математической модели мы должны найти компромисс между двумя обстоятельствами. С одной стороны, она должна быть достаточно подробной, чтобы учесть все существенные черты изучаемого явления. С другой стороны, необходимо отбросить все несущественные детали, затемняющие суть дела. Излишняя подробность затрудняет изучение свойств модели, а чрезмерное упрощение может привести к неправильным выводам относительно поведения реальной системы.

Мы начинаем изучение курса теории вероятностей с исследования свойств моделей таких случайных экспериментов, которые имеют конечное или счетное число исходов. Элементарным исходом мы будем называть такое событие, которое однозначно (с определенной точки зрения) говорит о том, чем закончился эксперимент. Это сразу же накладывает на множество элементарных исходов следующее важное ограничение: в каждом испытании происходит один и только один элементарный исход.

Чтобы понять, как должна выглядеть наша модель, рассмотрим пример. Однородный игральный кубик в одинаковых условиях подбрасывают много раз и отмечают число очков, выпавших на верхней грани. Ясно, что в этом эксперименте есть 6 элементарных исходов, которые мы обозначим ( означает, что выпало к очков). Пусть - относительная частота появления исхода . Тогда эти частоты обладают следующими свойствами:

1

2

Как отмечалось выше, частоты тяготеют к некоторым числам, которые мы будем называть вероятностями этих исходов. Ясно, что они должны наследовать свойства частот. Эти предварительные рассмотрения приводят нас к следующему определению.

Определение 1. Дискретным вероятностным пространством называется пара , где -конечное или счетное множество, Р - вещественная функция, заданная на , такая, что

1)

2)

Множество называется пространством элементарных исходов, его элементы -элементарными исходами, а число - вероятностью появления элементарного исхода .

Пример 1. Симметричную монету подбрасывают один раз. Здесь два элементарных исхода: выпал герб - Г, выпала цифра - Ц. Таким образом, . В силу симметрии естественно положить 5

Пример 2. Однородный симметричный игральный кубик подбрасывают один раз. В этом случае

Другие примеры будут приведены на практических занятиях. Важную роль играет следующий частный случай дискретного вероятностного пространства.

Определение 2. Говорят, что мы имеем задачу на классическое определение вероятности, если -конечное множество и для всех , , т.е. все исходыравновозможны.

Обычно предположение о равновозможности исходов делается из соображений симметрии задачи. Но так ли это на самом деле (т.е. верна ли модель), можно установить только из сравнения с экспериментальными данными.

 

Геометрическая вероятность. Непрерывное вероятностное пространство. Пример.

Геометрическое определение

Несмотря на то, что классическое определение является интуитивно понятным и выведенным из практики, оно, как минимум, не может быть непосредственно применено в случае, если количество равновозможных исходов бесконечно. Ярким примером бесконечного числа возможных исходов является ограниченная геометрическая область G, например, на плоскости, с площадью S. Случайно «подброшенная» «точка» с равной вероятностью может оказаться в любой точке этой области. Задача заключается в определении вероятности попадания точки в некоторую подобласть g с площадью s. В таком случае, обобщая классическое определение, можно прийти к геометрическому определению вероятности попадания в подобласть g:

В виду равновозможности вероятность эта не зависит от формы области g, она зависит только от её площади. Данное определение естественно можно обобщить и на пространство любой размерности, где вместо площади использовать понятие «объёма». Более того, именно такое определение приводит к современному аксиоматическому определению вероятности. Понятие объёма обобщается до понятия меры некоторого абстрактного множества, к которой предъявляются требования, которыми обладает и «объём» в геометрической интерпретации — в первую очередь, это неотрицательность и аддитивность.

Непрерывное вероятностное пространство. Геометрические вероятности. Формула классической вероятности следующим образом обобщается на случай непрерывных множеств элементарных исходов .

Пусть – ограниченная замкнутая область на евклидовой плоскости, а условия опыта таковы, что вероятность попадания в произвольную подобласть области пропорциональна площади этой подобласти и не зависит от ее местоположения в . При этих условиях для вероятности наступления любого наблюдаемого в данном опыте события справедлива формула геометрической вероятности:

, (2)

где – площадь области , – площадь подобласти .

Формула (2) естественным образом обобщается на случай пространств произвольной размерности:

,

где – мера множества (длина, площадь, объем и т. д. в зависимости от размерности того пространства, в котором рассматриваются данные множества).

Пример. На обслуживающее устройство в промежуток времени должны поступить две заявки. Если разность между моментами поступления заявок меньше , то вторая заявка теряется. Найти вероятность потери заявки.

◄ Обозначим через и моменты поступления 1-й и 2-й заявок соответственно. Тогда множество можно записать в виде: . Искомое событие ={заявка будет потеряна} запишется в виде: . Если воспользоваться геометрически определением, то множества и изобразятся областями на плоскости, представленными на рис. 2. Площади этих фигур , . По формуле (2) находим

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.