Основные физические и механические свойства никеля — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Основные физические и механические свойства никеля

2020-04-01 282
Основные физические и механические свойства никеля 0.00 из 5.00 0 оценок
Заказать работу

Содержание

 

Общие сведения

История открытия

Основные физические и механические свойства никеля

Нахождение в природе

Получение

Неорганические соединения никеля

Органические соединения никеля

Физические и химические свойства

Применение

Биологическое действие

Вывод

Список использованной литературы

 


Общие сведения

НИКЕЛЬ (лат. Niссolum) − химический элемент таблицы Менделеева, металл.

Символ элемента: Ni.

Атомный номер: 28.

Положение в таблице: 4-й период, группа - VIIIВ (10).

Относительная атомная масса: 58,69.

Степени окисления (жирным шрифтом выделена наиболее характерная): +2, +3, +1 и +4.

Валентности (жирным шрифтом выделена наиболее характерная): II, III, I и IV.

Электроотрицательность:

Электронная конфигурация: [ Ar ] 3 s 2 p 6 d 8 4 s 2.

Природный никель состоит из пяти стабильных нуклидов: 58 Ni (67,88% по массе), 60 Ni (26,23%), 61 Ni (1,19%),62 Ni (3,66%) и 64 Ni (1,04%).

Простое вещество никель в компактном виде - блестящий серебристо-белый металл.

Строение атома

Число электронов: 12.

Число протонов: 12.

Радиус нейтрального атома никеля 0,124 нм.

Радиус иона никеля 0,124 нм. Радиус иона Ni 2+ - от 0,069 нм (координационное число 4) до 0,083 нм (координационное число 6).

Энергии последовательной ионизации атома никеля 7,635, 18,15, 35,17, 56,0 и 79 эВ.

 


История открытия

 

Уже с 17 в. рудокопам Саксонии (Германия) была известна руда, которая по внешнему виду напоминала медные руды, но меди при выплавке не давала. Ее называли купферникель (нем. Kupfer - медь, а Nickel - имя гнома, подсовывавшего горнякам вместо медной руды пустую породу). Как оказалось впоследствии, купферникель - соединения никеля и мышьяка, NiAs. История открытия никеля растянулась почти на полвека. Первым вывод о присутствии в купферникеле нового «полуметалла» (то есть, по тогдашней терминологии, простого вещества, промежуточного по свойствам между металлами и неметаллами) сделал шведский металлург А.Ф. Кронстедт в 1751 году. Однако более двадцати лет это открытие оспаривалось и господствовала точка зрения, что Кронстедт получил не новое простое вещество, а какое-то соединение с серой то ли железа, то ли висмута, то ли кобальта, то ли какого- то другого металла.

Только в 1775 г., через 10 лет после смерти Кронстедта, швед Т. Бергман выполнил исследования, позволявшие заключить, что никель - это простое вещество. Но окончательно никель как элемент утвердился только в начале 19 -го века, в 1804 году, после скрупулезных исследований немецкого химика И. Рихтера, который для очистки провел 32 перекристаллизации никелевого купороса (сульфата никеля) и в результате восстановления получил чистый металл.

 

Основные физические и механические свойства никеля

Атомная масса 58,71.

Плотность при 20ОС, г/см3 − 8, 9.

Температура, ОС:

плавления - 1453.

- кипения - 2140.

Скрытая теплота, кал/г:

- плавления - 73.

испарения - 1450.

Удельное электросопротивление при 20o С, Ом. мм2/м − 0, 068.

Модуль нормальной упругости, кг/мм2 - 20000.

Временное сопротивление, кг,/мм2:

 отожжённого − 40-50.

деформированного − 70-90.

Относительное удлинение, %

 отожжённого - 35-40.

деформированного − 2-4.

Твёрдость НВ никеля:

- отожжённого - 70-90.

деформированного - 200.

литого - 60-70.

Теплопроводность при 0-100 oС, кал/(см. сек. град) − 0, 142.

Коэффициент линейного расширения при 20 - 100О, 1/град − 0, 000013.

Предел упругости никеля отожжённого, кг/мм2 - 8.

Предел текучести никеля, кг/мм2:

- отожжённого - 12.

деформированного - 70.

Модуль сдвига, кг/мм2 - 7300.

Предел усталости никеля на базе 107 циклов, кг/мм2:

- отожжённого − 16, 6.

деформированного - 29.

Ударная вязкость отожжённого никеля, кг. м/см2 - 18.


Нахождение в природе

 

В земной коре содержание никеля составляет около 8·10-3% по массе. Возможно, громадные количества никеля - около 17·1019 т - заключены в ядре Земли, которое, по одной из распространенных гипотез, состоит из железоникелевого сплава. Если это так, то Земля примерно на 3% состоит из никеля, а среди составляющих планету элементов никель занимает пятое место - после железа, кислорода, кремния и магния. Никель содержится в некоторых метеоритах, которые по составу представляют собой сплав никеля и железа (так называемые железоникелевые метеориты). Разумеется, как практический источник никеля такие метеориты значения не имеют. Важнейшие минералы никеля: никелин (современное название купферникеля) NiAs, пентландит [сульфид никеля и железа состава (Fe,Ni)9S8], миллерит NiS, Герсфордит (никелевый блеск) NiAsS гарниерит(Ni, Mg)6Si4O10(OH)2 и другие никельсодержащие силикаты. В морской воде содержание никеля составляет примерно 1 ·10-8%

Элементы железо, кобальт и никель образуют триаду железа, или семейство железо. Атомы элементов триады железа имеют на внешнем энергетическом уровне по 2 электрона, которые они отдают в химических реакциях. Однако в образовании химических связей участвуют и электроны 3 d-орбиталей второго снаружи уровня. В своих устойчивых соединениях, эти элементы проявляют степень окисления +2, +3. Образуют оксиды состава RO и R2О3. Им соответствуют гидроксиды состава R(OH) 2 и R(ОН) 3.

Для элементов триады (семейства) железа характерно свойство присоединять нейтральные молекулы, например, оксида углерода (II). Карбонилы Ni(CO)4, Fe(CO)5 (жидкости при t = 20-60°C) и Со(СО)8 (кристаллы с t пл >200 ° C, нерастворимые в воде и ядовитые) используются для получения сверхчистых металлов.

Кобальт и никель менее реакционноспособны, чем железо. При обычной температуре они устойчивы к коррозии на воздухе, в воде и в различных растворах. Разбавленные соляная и серная кислоты легко растворяют железо и кобальт, а никель - лишь при нагревании. Концентрированная азотная кислота все три металла пассивирует.

Металлы семейства железа при нагревании взаимодействуют с кислородом, парами воды, галогенами, серой, фосфором, кремнием, углем и бором. Наиболее устойчивыми являются соединения железа (III), кобальта (II) и никеля (II) - для них известны почти все соли.

Железо, кобальт и никель в ряду стандартных электродных потенциалов расположены до водорода. Поэтому они распространены в природе в виде соединений (оксиды, сульфиды, сульфаты, карбонаты), в свободном состоянии встречаются редко - в виде железных метеоритов. По распространенности в природе за железом следует никель, а затем кобальт. Соединения элементов семейства железа в степени окисления +2 сходны между собой. В состоянии высших степеней окисления они проявляют окислительные свойства.

Железо, кобальт, никель и их сплавы - весьма важные материалы современной техники.

 

Получение

 

Около 80% никеля от общего его производства (без России) получают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руды выделяют медный, никелевый и пирротиновый концентраты.

Никелевый рудный концентрат в смеси с флюсами плавят в электрических шахтах или отражательных печах с целью отделения пустой породы и извлечения Н. в сульфидный расплав (штейн), содержащий 10-15% Ni. Обычно электроплавке (основной метод плавки в России) предшествуют частичный окислительный обжиг и окускование концентрата. Наряду с Ni в штейн переходят часть Fe, Со и практически полностью Сu и благородные металлы. После отделения Fe окислением (продувкой жидкого штейна в конвертерах) получают сплав сульфидов Cu и Ni - файнштейн, который медленно охлаждают, тонко измельчают и направляют на флотацию для разделения Cu, и Ni. Никелевый концентрат обжигают в кипящем слое до NiO.

 

Ni2S3+O2=NiO+SO2

 

Металл получают восстановлением NiO в электрических дуговых печах. NiO+C=Ni+CO Из чернового никеля отливают аноды и рафинируют электролитически. Содержание примесей в электролитном никеле. (марка 110) 0,01%. ля разделения Cu и Ni используют также т. н. карбонильный процесс, основанный на обратимости реакции:

+4CO=Ni(CO)4

 

Получение карбонила проводят при 100-200 атм. и при 200-250°С, а его разложение - без доступа воздуха при атмосферном давлении и около 200°С.

Разложение Ni(CO)4 используют также для получения никелевых покрытий и изготовления различных изделий (разложение на нагретой матрице). В современных "автогенных" процессах плавка осуществляется за счёт тепла, выделяющегося при окислении сульфидов воздухом, обогащенным кислородом. Это позволяет отказаться от углеродистого топлива, получить газы, богатые SO2, пригодные для производства серной кислоты или элементарной серы, а также резко повысить экономичность процесса. Наиболее совершенно и перспективно окисление жидких сульфидов. Всё более распространяются процессы, основанные на обработке никелевых концентратов растворами кислот или аммиака в присутствии кислорода при повышенных температурах и давлении (автоклавные процессы). Обычно никель переводят в раствор, из которого выделяют его в виде богатого сульфидного концентрата или металлического порошка (восстановлением водородом под давлением). Из силикатных (окисленных) руд никель также может быть сконцентрирован в штейне при введении в шихту плавки флюсов - гипса или пирита. Восстановительно-сульфидирующую плавку проводят обычно в шахтных печах; образующийся штейн содержит 16-20% Ni, 16-18% S, остальное - Fe. Технология извлечения никеля из штейна аналогична описанной выше, за исключением того, что операция отделения Cu часто выпадает. При малом содержании в окисленных рудах Со их целесообразно подвергать восстановительной плавке с получением ферроникеля, направляемого на производство стали.

Для извлечения никеля из окисленных руд применяют также гидрометаллургические методы - аммиачное выщелачивание предварительно восстановленной руды, сернокислотное автоклавное выщелачивание и др.

 

Применение

никель органический соединение биологический

Основная доля выплавляемого никеля расходуется на приготовление различных сплавов. Так, добавление никеля в стали позволяет повысить химическую стойкость сплава, и все нержавеющие стали обязательно содержат никель. Кроме того, сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. Сплав железа и никеля, содержащий 36-38% никеля, обладает удивительно низким коэффициентом термического расширения (это - так называемый сплав инвар), и его применяют при изготовлении ответственных деталей различных приборов.

При изготовлении сердечников электромагнитов широкое применение находят сплавы под общим названием пермаллои. Эти сплавы, кроме железа, содержат от 40 до 80% никеля. Общеизвестны применяемые в различных нагревателях нихромовые спирали, которые состоят из хрома (10-30%) и никеля. Из никелевых сплавов чеканятся монеты. Общее число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.

Высокая коррозионная стойкость никелевых покрытий позволяет использовать тонкие никелевые слои для защиты различных металлов от коррозии путем их никелирования. Одновременно никелирование придает изделиям красивый внешний вид. В этом случае для проведения электролиза используют водный раствор двойного сульфата аммония и никеля (NH4)2Ni(SO4)2.

Никель широко используют при изготовлении различной химической аппаратуры, в кораблестроении, в электротехнике, при изготовлении щелочных аккумуляторов, для многих других целей.

Специально приготовленный дисперсный никель (так называемый никель Ренея) находит широкое применение как катализатор самых разных химических реакций. Оксиды никеля используют при производстве ферритных материалов и как пигмент для стекла, глазурей и керамики; оксиды и некоторые соли служат катализаторами различных процессов.

 


 

Биологическое действие

 

Токсическое действие никеля и его неорганических соединений. Общий характер действия

Никель - необходимый микроэлемент, в частности для регуляции обмена ДНК. Однако, его поступление в избыточных количествах может представлять опасность для здоровья. Здесь особенно отчетливо видна справедливость слов Парацельса о том, что “нет токсичных веществ, а есть токсичные дозы”.

Никель в сочетании с кобальтом, железом, медью также участвует в процессах кроветворения, а самостоятельно - в обмене жиров, обеспечении клеток кислородом. В определенных дозах никель активизирует действие инсулина. Потребность в никеле вполне обеспечивается рациональным питанием, содержащим, в частности, мясо, овощи, рыбу, хлебобулочные изделия, молоко, фрукты и ягоды.

При повышенных концентрациях обычно может проявляться в виде аллергических реакций (дерматит, ринит и пр.), анемии, повышенной возбудимости центральной и вегетативной нервной системы. Хроническая интоксикация никелем повышает риск развития новообразований (легкие, почки, кожа) - никель влияет на ДНК и РНК.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечнососудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni2+) примерно в 2 раза более токсичны, чем его комплексные соединения.

Повышенное содержание никеля в окружающей среде приводит к появлению эндемических заболеваний, бронхиального рака. Соединения никеля относят к 1 группе канцерогенов.активирует или угнетает ряд ферментов (аргиназу, карбоксилазу, 5-нуклеозидфосфатазы и др.); влияет на дефосфорилирование аминотрифосфата. В крови человека Ni связывается преимущественно с гамма-глобулином сыворотки. После введения NiCI2 кроликам в сыворотке крови обнаружен белок - никелоплазмин, идентифицированный как a1-микроглобулин. Однако, 90% Ni в крови кроликов через 24 ч связываются с альбуминами, лишь незначительная часть поступившего NiCI2 выявлена во фракциях а2-глобулина. В организме Ni образует комплексы с биокомплексонами. Ni имеет особое сродство к легочной ткани, в эксперименте при любом пути введения поражает ее. Оказывает влияние на кроветворение, углеводный обмен. Металлический Ni и его соединения вызывают образование опухолей у животных, а также профессиональный рак. Канцерогенное действие Ni связывают с нарушением метаболизма клеток. Соли Ni вызывают поражение кожи человека с развитием повышенной чувствительности к металлу.

Острое отравление.

При однократном введении в желудок белых крыс NiCl2 - возбуждение, затем угнетение; покраснение слизистых и кожи; понос. Комплексные соли Ni с ЭДТА менее токсичны, чем соли неорганических кислот. Введение в трахею мелкодисперсного Ni в дозах 5 и 100 мг вызывает гибель белых крыс в короткие сроки от воспаления легких с периваскулярным отеком, кровоизлияниями во всех внутренних органах. У выживших животных в отдаленные сроки - гиперплазия лимфоидной ткани вокруг сосудов и бронхов.

У кроликов, кроме того, исхудание, повышение проницаемости сосудов, изменения на ЭКГ, нарушение функций печени и почек. Аналогичную картину вызывает Ni2O3 в несколько больших дозах. После введения в трахею крыс 50 мг Ni(OH)2 или Ni(OH)3 животные погибают в 1-2 сутки при резких кровоизлияниях и отеке легких; такая же доза Ni203 переносится без видимых признаков отравления, кроме похудания и увеличения массы легких. Однократное введение в трахею крыс. 60 мг пыли, содержащей 95% NiO, через 3 месяца вызвало развитие мелких пылевых очажков, позднее узелки, состоящие почти, исключительно из макрофагов. Пыль, содержавшая 64% NiO и NiS, в тех же условиях опыта привела к гибели 2/3 животных в первые 5 суток. У выживших крыс через 9-12 месяцев - диффузный умеренный перибронхиальный и периваскулярный склероз.

Хроническое отравление.

Животные.

Длительное поступление NiSO4 с водой при суточной дозе 0,54 мг/кг вызывало у кроликов резкие дегенеративные изменения в печени, почках, сердечной мышце и гиперплазию селезенки. У крыс, получавших в течение 13 недель NiCI по 0,3 мг/кг (по Ni),-снижение числа эритроцитов, каталазной активности крови, массы тела. Введение через рот по 4-12 мг/кг Ni(С2H3O2) и NiС12 в течение 200 дней переносится кошками и собаками без видимых проявлений токсического действия. Исхудание, снижение содержания аскорбиновой кислоты и щелочной фосфатазы во внутренних органах и слизистой кишечника отмечали у крыс при ежедневной дозе NiCI2 0,5-5 мг/кг (по Ni) в течение 7 месяцев. При добавлении к корму 0,01% NiSО4 (по Ni) у молодых бурых крыс - нарушение активности ряда ферментов в крови и внутренних органах, повышение активности церулоплазмнна в печени. Указывают также на повреждение семенников у крыс при длительном введении NiSO4.

Круглосуточное вдыхание в течение 3 месяцев аэрозоля металлического NI в концентрации 0,02-0,5 мг/м3 сказалось у крыс повышением артериального давления, эритроцитозом, сдвигом в активности аргиназы, каталазы, нарушением выделительной функции печени, повышением копропорфирина в моче. Аэрозоль NiCl2 в концентрации 0,1 мг/м3 при вдыхании крысами по 12 ч в день 6 раз в неделю уже через 2 недели вызвал разрастание бронхиального эпителия, клеточную инфильтрацию альвеолярных перегородок. Круглосуточное воздействие концентраций 0,005-0,5 мг/м3 (по Ni) сопровождалось также угнетением иодфиксирующей функции щитовидной железы. Вдыхание NiO в концентрации 120 мг/м3 по 12 ч в день уже через 2 недели вызвало макрофагальную реакцию и клеточную инфильтрацию альвеолярных перегородок у крыс, а при 80-100 мг/м* по 5 ч в день в течение 9-12 месяцев развивался умеренный склероз легких с, образованием клеточных узелков в лимфатических железах и слущиванием бронхиального эпителия. У молодых хомяков вдыхание 39-170 мг/м3 по 6 ч в день в течение 3 недель и 61,6 мг/м3 в течение 3 месяцев не вызывало заметных сдвигов. В легких задержалось ~20% вдыхаемой NiO, которая удалялась довольно медленно. Аэрозоль Ni2O3 в концентрации 340-360мг/м3 по 1,5 ч в день в течение 4 месяцев сначала увеличил число эритроцитов и содержание гемоглобина, а затем эта показатели вернулись к норме. Из 20 крыс 7 пали в первый период затравки. При микроскопическом изучении погибших и убитых после 4 месяцев отравления − воспалительные изменения слизистой верхних дыхательных путей, очаговая десквамативная или катарально-геморрагическая пневмония.

Вдыхание пыли файнштейна (11,3% металлического Ni, 58,3% Си) или пыли из электрофильтров (52,3% NiO) по 5 ч в день 5 раз в неделю в течение 6 месяцев в концентрации 70 мг/м3 привело к гибели 24 крыс в первом случае и 6 во втором. В обоих случаях - фазное изменение уровня сахара в крови, нарушение соотношения белковых фракций в сыворотке крови и снижение в ней содержания холестерина. Несколько повысилось число эритроцитов и уровень гемоглобина, число ретикулоцитов и эритробластическая реакция костного мозга. Патологоанатомически - бронхит, пневмонии и фиброзные изменения. В печени - обеднение гликогеном и дистрофические изменения; в почках - повреждения эпителия канальцев и атрофия клубочков. При концентрации обоих аэрозолей 7 мг/м3 и той же длительности воздействия уловимых изменений не отмечено. При вдыхания пыли цинк-никелевых ферритов (FeO, ZnO и NiO) в концентрации 100-120 мг/м у крыс картина отравления, сходная с полученной при ингаляции одной NiO.

Человек.

В производстве аккумуляторных батарей при содержании в исходном продукте 72% Ni выявлено отсутствие или снижение обоняния при концентрации N1 в воздухе 16-560 мг/м3. При 10-70 мг/м3 (в воздухе еще и Cd) и стаже 8 лет и более - белок в моче. При стаже 5-10 лет 84% рабочих жаловались на головные боли, головокружение, раздражительность, понижение аппетита, эпигастральные боли, одышку. Часто наблюдались снижение кровяного давления, функциональные нарушения центральное нервной системы, гипо- и анацидные гастриты, нарушения антитоксической и протромбинообразовательной функции печени, тенденция к лейкопении, лимфо- к моноцитозу. Сходные изменения обнаружены у рабочих производства щелочных аккумуляторов при получении массы, содержащей Ni(OH)2 и NiSO4. При электролитическом получении Ni у рабочих основных специальностей частые носовые кровотечения, полнокровие зева и бронхов, резкие изменения слизистой носа и даже прободение носовой перегородки, трудно снимаемый серый налет на краю десен, темные налеты на языке. Концентрация NiSO4 обычно не превышала 0,2-8 мг/м3, но иногда доходила до 70 мг/м'. Но одновременно в воздухе был туман H2S04 в концентрациях 25-195 мг/м3.

Из обследованных 458 рабочих цехов электролитического рафинирования Ni при концентрации Ni в воздухе 0,02-4,53 мг/м3 (дополнительно в воздухе H2S04; стаж 10 лет и выше) у 357 человек - носовые кровотечения, частый насморк, нарушение обоняния, хронические синуситы. Изменения придаточных полостей носа обнаружены у 302 человек. Поражения лобных пазух протекают довольно скрытно и выявляются рентгенологически. При получении Ni гидрометаллургическим способом из сульфидных руд при концентрации гидрозоля солей никеля 0,021-2,6 мг/м3 (в воздухе также пары H2SO4) - поражения слизистой носоглотки в 4-7 раз чаще, чем у рабочих других цехов. Описаны случаи бронхиальной астмы у работающих с Ni. При повышенном содержании Ni в атмосферном воздухе - сдвиги в периферической крови, анемия, ретикулоцитоз, а также снижение кислотности желудочного сока. В производстве никелевых ферритов (концентрация пыли в воздухе 11-180 мг/м3) среди 145 рабочих при среднем стаже до 4 лет у 88 человек - умеренная анемия, лейкоцитоз или лейкопения, нарушение стойкости эритроцитов.

Канцерогенное действие.

Предполагают, что канцерогенное действие Ni связано с внедрением его в клетки, где он вызывает нарушения ферментных и обменных процессов, в результате которых, возможно, образуются канцерогенные продукты. Никель связывается с РНК, значительно меньше с ДНК, вызывая нарушения структуры и функции нуклеиновых кислот, и с гистамином. Опасность бронхогенного рака при вдыхании Ni, возможно, зависит и от задержки его в легких.

Животные.

В эксперименте опухоли получены от металлического Ni, NiO, сульфидов, но не от растворимых солей. Бластомогенный эффект по-видимому, не зависит от степени растворимости, а возможно, от проникания Ni в клетку и изменений, вызываемых в клеточных мембранах. Металлический Ni, введенный в носовую полость, в плевру и бедренную кость, вызвал злокачественные опухоли (частично-остеогенные саркомы) у 30% белых крыс, погибших в течение 7-16 месяцев после введения. В результате вдыхания пыли чистого Ni, полученного из Ni(CO)4, с дисперсностью до 4 мкм (6 ч в день 4-5 раз в неделю в течение 21 месяца) белые мыши, белые крысы и морские, свинки погибали чаще всего в течение первых 12-15 месяцев. У морских свинок и большинства крыс-множественные аденоматозные разрастания в альвеолах легких и гиперпластическая пролиферация эпителия конечных бронхов. У 6 морских свинок-раковые опухоли. У крыс и хомяков, вдыхавших пыль металлического Ni вместе с SO, развивались воспалительные изменения, бронхоэктазы, метаплазия легочного эпителия, но не выявлено раковых опухолей в легких. По-видимому, раздражающее действие SO2 не стимулировало бластомогенное действие Ni. На месте имплантации NiS в мышцах крыс возникали фибромио-саркомы, дающие метастазы в легкие.

Человек.

Рак носа, придаточных полостей и легких в Англии давно отнесен к профессиональным заболеваниям. Показано, что у работающих с Ni и его соединениями риск заболевания раком легких в 5 раз, а раком носа и его придаточных полостей в 150 раз превышает нормальную частоту этих заболеваний. На повышенную опасность рака легких среди рабочих, занятых рафинированием Ni и производством его солей. К 1974 г., было известно 253 случая профессионального рака верхних дыхательных путей и легких у рабочих производства Ni. У рабочих, занятых электролитическим получением Ni, при вдыхании паров электролита, содержащего NiSO4 через 6-7 лет на фоне аносмии, перфорации носовой перегородки развивался рак носа и его придаточных полостей. Известен случай развития ретикулосаркомы носовой полости у работницы, занимавшейся 5 лет никелированнем и вдыхавшей туман (аэрозоль) солей Ni. Возможно, усугубляющим было раздражающее действие других ингредиентов ванн. Описаны случаи рака легких среди работающих, по добыче, обогащению и переработке медно-никелевых руд.

По некоторым данным, смертность от рака легких, полости носа и его пазух составляет 35,5% всех смертей рабочих, занятых электролизом и рафинированием Ni. Среди работающих на никелевых производствах выявлена повышенная смертность от рака по сравнению с контрольными данными. На первом месте был рак легких, на втором - желудка. Наиболее часто страдали работавшие при пирометаллургических процессах в обжиго-восстановительных цехах (стаж 12-23 года, концентрации пыли колебались в пределах порядка 10-103 мг/м3; в ней содержалось 7% Ni в виде сульфидов, NiO или металлического Ni). Высока смертность от рака в цехах электролиза при наличии в воздухе аэрозолей NiCl2 и NiSO4. Средний стаж работы у умерших от рака легких 7-13 лет, от рака желудка - 10-14.

Действие на кожу.

Считают, что Ni не обладает прямым раздражающим действием на кожу. Однако у никелировщиков, у работающих на производстве Ni электролизом и имеющих контакт с его солями наблюдаются никелевая экзема, “никелевая чесотка”: фолликулярно расположенные папулы, отек, эритема, пузырьки, вздутие. Профессиональные никелевые дерматиты составляют 11% всех профессиональных заболеваний кожи, а в электролитическом производстве Ni - 15%. У работающих в гидрометаллургическом производстве Ni заболевания кожи в 2- 4 раза чаще, чем в других цехах, и обнаружены у 5,5% среди 651 осмотренных рабочих.и его соединения-сильные сенсибилизаторы. У морских свинок сенсибилизация вызывается внутрикожным введением NiSO4. Соединяясь с белками эпидермиса, Ni образует истинный антиген. У больных никелевыми дерматозами определяли циркулирующие в крови антитела. Связывание Ni в комплексные соединения снижаетего сенсибилизирующее, но не раздражающее действие. В опытах на морских свинках лаурилсульфат натрия предотвращал развитие сенсибилизации к Ni. Диметилдитиокарбамат натрия и диметилглиоксим ослабляют кожные реакции у чувствительных к Ni лиц, по-видимому, при этом образуются и соответствующие комплексные соединения.

Чувствительность человека к сенсибилизирующему действию Ni очень велика. Описаны случаи аллергических поражений у кассирш банков, имевших дело с металлическими монетами. Источником аллергии могут быть даже инъекционные иглы. У кроликов аппликация Ni на кожу вызвала картину отравления и гибель. Металл обнаруживался в мальпигиевом слое кожи, в сальных и потовых железах. Через изолированную кожу трупа человека проходит 1,45 мкг Ni / см3, Применение растворителей вместе с соединениями Ni способствует, их прониканию в кожу.

Вывод

 

Никель является одним из чрезвычайно важных металлов; он имеет свою замечательную историю и заманчивые перспективы дальнейшего применения.

Как химический элемент никель известен немногим более 200 лет, но практическое применение его в виде различных сплавов уходит в глубокую древность.

С развитием многих отраслей техники появилась потребность в высоколегированных сталях и сплавах с особыми физическими, химическими и механическими свойствами. В этом отношении первостепенная роль принадлежала и принадлежит никелю, никелевым сталям и никелевым сплавам. К настоящему времени насчитывается более 3000 составов различных сталей и сплавов, где никель является основой или присутствует как легирующий элемент.

Применение никеля в современной технике весьма разнообразно. Он применяется в чистом виде как химически стойкий, ферромагнитный материал в аппаратостроении, как катализатор и как материал для аккумуляторов. Чистый никель применяется в значительных масштабах для защитных поверхностных покрытий: так называемое никелирование имеет большое значение для придания поверхности металлических материалов высокой химической стойкости.

Большое развитие получило применение никеля в виде различных сплавов на его основе. Следует особо отметить широкое применение сплавов никеля с хромом и железом (нихромы и ферронихромы), коррозионно- и кислотостойких никелевых сплавов, жаропрочных сплавов, сплавов никеля с медью, бериллием, кобальтом, твердых сплавов, где никель необходим как связующий материал.

 


Список использованной литературы

 

1. Вредные вещества в промышленности. / Т. 3. - Химия, 1977.

. Антоньев А.А. Гигиена труда.− 1964.

. Михеев М.И. Материалы по токсикологии карбонила никеля. − 1970.

. Ицкова А.И. Фармакология и токсикология. / Т. 32. − 1969.

. Смолеговский А.М. Энциклопедия химических элементов. − 2000.

. Крицман В.А. Энциклопедический словарь химика. − 1982.

7. www.wikipedia.ru

. www.chemistry.ru

. www.google.ru

. www.ximikov.net

Содержание

 

Общие сведения

История открытия

Основные физические и механические свойства никеля

Нахождение в природе

Получение

Неорганические соединения никеля

Органические соединения никеля

Физические и химические свойства

Применение

Биологическое действие

Вывод

Список использованной литературы

 


Общие сведения

НИКЕЛЬ (лат. Niссolum) − химический элемент таблицы Менделеева, металл.

Символ элемента: Ni.

Атомный номер: 28.

Положение в таблице: 4-й период, группа - VIIIВ (10).

Относительная атомная масса: 58,69.

Степени окисления (жирным шрифтом выделена наиболее характерная): +2, +3, +1 и +4.

Валентности (жирным шрифтом выделена наиболее характерная): II, III, I и IV.

Электроотрицательность:

Электронная конфигурация: [ Ar ] 3 s 2 p 6 d 8 4 s 2.

Природный никель состоит из пяти стабильных нуклидов: 58 Ni (67,88% по массе), 60 Ni (26,23%), 61 Ni (1,19%),62 Ni (3,66%) и 64 Ni (1,04%).

Простое вещество никель в компактном виде - блестящий серебристо-белый металл.

Строение атома

Число электронов: 12.

Число протонов: 12.

Радиус нейтрального атома никеля 0,124 нм.

Радиус иона никеля 0,124 нм. Радиус иона Ni 2+ - от 0,069 нм (координационное число 4) до 0,083 нм (координационное число 6).

Энергии последовательной ионизации атома никеля 7,635, 18,15, 35,17, 56,0 и 79 эВ.

 


История открытия

 

Уже с 17 в. рудокопам Саксонии (Германия) была известна руда, которая по внешнему виду напоминала медные руды, но меди при выплавке не давала. Ее называли купферникель (нем. Kupfer - медь, а Nickel - имя гнома, подсовывавшего горнякам вместо медной руды пустую породу). Как оказалось впоследствии, купферникель - соединения никеля и мышьяка, NiAs. История открытия никеля растянулась почти на полвека. Первым вывод о присутствии в купферникеле нового «полуметалла» (то есть, по тогдашней терминологии, простого вещества, промежуточного по свойствам между металлами и неметаллами) сделал шведский металлург А.Ф. Кронстедт в 1751 году. Однако более двадцати лет это открытие оспаривалось и господствовала точка зрения, что Кронстедт получил не новое простое вещество, а какое-то соединение с серой то ли железа, то ли висмута, то ли кобальта, то ли какого- то другого металла.

Только в 1775 г., через 10 лет после смерти Кронстедта, швед Т. Бергман выполнил исследования, позволявшие заключить, что никель - это простое вещество. Но окончательно никель как элемент утвердился только в начале 19 -го века, в 1804 году, после скрупулезных исследований немецкого химика И. Рихтера, который для очистки провел 32 перекристаллизации никелевого купороса (сульфата никеля) и в результате восстановления получил чистый металл.

 

Основные физические и механические свойства никеля

Атомная масса 58,71.

Плотность при 20ОС, г/см3 − 8, 9.

Температура, ОС:

плавления - 1453.

- кипения - 2140.

Скрытая теплота, кал/г:

- плавления - 73.

испарения - 1450.

Удельное электросопротивление при 20o С, Ом. мм2/м − 0, 068.

Модуль нормальной упругости, кг/мм2 - 20000.

Временное сопротивление, кг,/мм2:

 отожжённого − 40-50.

деформированного − 70-90.

Относительное удлинение, %

 отожжённого - 35-40.

деформированного − 2-4.

Твёрдость НВ никеля:

- отожжённого - 70-90.

деформированного - 200.

литого - 60-70.

Теплопроводность при 0-100 oС, кал/(см. сек. град) − 0, 142.

Коэффициент линейного расширения при 20 - 100О, 1/град − 0, 000013.

Предел упругости никеля отожжённого, кг/мм2 - 8.

Предел текучести никеля, кг/мм2:

- отожжённого - 12.

деформированного - 70.

Модуль сдвига, кг/мм2 - 7300.

Предел усталости никеля на базе 107 циклов, кг/мм2:

- отожжённого − 16, 6.

деформированного - 29.

Ударная вязкость отожжённого никеля, кг. м/см2 - 18.


Нахождение в природе

 

В земной коре содержание никеля составляет около 8·10-3% по массе. Возможно, громадные количества никеля - около 17·1019 т - заключены в ядре Земли, которое, по одной из распространенных гипотез, состоит из железоникелевого сплава. Если это так, то Земля примерно на 3% состоит из никеля, а среди составляющих планету элементов никель занимает пятое место - после железа, кислорода, кремния и магния. Никель содержится в некоторых метеоритах, которые по составу представляют собой сплав никеля и железа (так называемые железоникелевые метеориты). Разумеется, как практический источник никеля такие метеориты значения не имеют. Важнейшие минералы никеля: никелин (современное название купферникеля) NiAs, пентландит [сульфид никеля и железа состава (Fe,Ni)9S8], миллерит NiS, Герсфордит (никелевый блеск) NiAsS гарниерит(Ni, Mg)6Si4O10(OH)2 и другие никельсодержащие силикаты. В морской воде содержание никеля составляет примерно 1 ·10-8%

Элементы железо, кобальт и никель образуют триаду железа, или семейство железо. Атомы элементов триады железа имеют на внешнем энергетическом уровне по 2 электрона, которые они отдают в химических реакциях. Однако в образовании химических связей участвуют и электроны 3 d-орбиталей второго снаружи уровня. В своих устойчивых соединениях, эти элементы проявляют степень окисления +2, +3. Образуют оксиды состава RO и R2О3. Им соответствуют гидроксиды состава R(OH) 2 и R(ОН) 3.

Для элементов триады (семейства) железа характерно свойство присоединять нейтральные молекулы, например, оксида углерода (II). Карбонилы Ni(CO)4, Fe(CO)5 (жидкости при t = 20-60°C) и Со(СО)8 (кристаллы с t пл >200 ° C, нерастворимые в воде и ядовитые) используются для получения сверхчистых металлов.

Кобальт и никель менее реакционноспособны, чем железо. При обычной температуре они устойчивы к коррозии на воздухе, в воде и в различных растворах. Разбавленные соляная и серная кислоты легко растворяют железо и кобальт, а никель - лишь при нагревании. Концентрированная азотная кислота все три металла пассивирует.

Металлы семейства железа при нагревании взаимодействуют с кислородом, парами воды, галогенами, серой, фосфором, кремнием, углем и бором. Наиболее устойчивыми являются соединения железа (III), кобальта (II) и никеля (II) - для них известны почти все соли.

Железо


Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.154 с.