Факторы, модулирующие операционный стресс — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Факторы, модулирующие операционный стресс

2020-04-01 85
Факторы, модулирующие операционный стресс 0.00 из 5.00 0 оценок
Заказать работу

 

Общая картина операционного стресса и вклад, вносимый каждым из рассмотренных выше факторов хирургической агрессии, зависят от многих обстоятельств.

Имеют значение возраст и исходное состояние больных, умение и неумение хирурга, возможности анестезиолога и понимание им своих задач, срочность или плановость операции (т.е. возможность проведения соответствующей подготовки, включающей коррекцию дыхания, кровообращения и метаболизма). Важны характер выполняемой операции, стиль работы хирурга (оперирует ли он быстро, но травматично или, наоборот, медленно, но зато умело, а может быть, и медленно, и травматично). Что касается знаний и умения анестезиолога, то очень важно, чтобы они были подкреплены и возможностями лечебного учреждения, в первую очередь квалифицированными сотрудниками, соответствующим оборудованием, в том числе аппаратурой для контроля функций, а также медикаментами и препаратами для трансфузионной терапии. Анализировать операционный стресс анестезиолог должен на всех этапах операции, а также после нее, потому что этот стресс многолик.

Патогенез

 

Из данных об этиологии операционного стресса следует, что он «запускается» комплексом нейрогуморальных реакций. В последующем развитии любого операционного стресса различают три этапа функциональных расстройств:

1) вначале возникает состояние тревоги, возбуждения, предназначенное для усиления деятельности жизненно важных органов за счет менее важных органов и тканей;

2) нарушаются функции второстепенных органов и тканей из-за слишком длительного голодного режима, на котором они находятся;

3) в конце концов наступает расстройство функций жизненно важных органов, связанные с функциональными нарушениями, которые возникли в организме на втором этапе.

Первый этап стресса

 

Первичная реакция на факторы операционной агрессии начинается с возбуждения ретикулярной формации, гипоталамо-гипофизарной системы, которые вовлекают в процесс симпатико-адреналовую систему и другие эндокринные железы — щитовидную, поджелудочную, ренин-ангиотензиновую систему. Несмотря на несомненно существующую при хирургической агрессии полигландулярную эндокринную стимуляцию, ведущую роль вдеятельности физиологических механизмов и в клинических последствиях операционного стресса играют гормоны мозгового и коркового вещества надпочечников.

В этот момент функциями организма управляют в первую очередь гормоны агрессии катехоламины (адреналин, норадреналин, дофамин). Соотношение их бывает различным: психоэмоциональный стресс стимулирует преимущественно выброс адреналина, болевой — норадреналина. Период их полураспада составляет 20—30 с, но продолжение операционной агрессии ведет к новому выбросу этих медиаторов. Катехоламины адсорбируются мембранами клеток и гидролизуются под действием моноаминоксидазы.

Для выброса катехоламинов из мозгового вещества надпочечников совсем необязателен нервный импульс из ретикулярной формации. Неменьшее количество катехоламинов выбрасывается надпочечниками под действием серотонина, гистамина и других биологически активных веществ, поступающих из пораженных тканей. Эта реакция осуществляется как непосредственным действием на надпочечники, так и опосредованно через зрительный бугор. В условиях операционной агрессии в особо травматичные моменты операции уровень катехоламинов может повышаться многократно.

Катехоламины действуют через а-, бета1- и бета2-адренорецепторы, которые находятся в различных органах в разных соотношениях. Оказывая влияние через эти рецепторы на системы организма, катехоламины могут давать как возбуждающий, так и тормозящий эффект. В частности, стимулируются дыхание, частота сердечных сокращений, сердечный выброс и артериальное давление, усиливается метаболизм. Следовательно, хирургическая агрессия вызывает высокие режимы работы в большинстве систем организма, включая их в борьбу. Однако надо четко представлять, что эти высокие режимы сочетаются не с болee экономичной работой систем, а наоборот, с неоправданно щедрым расходом энергии, гиперфункцией органов и истощением их функциональных резервов.

В первичных проявлениях операционного стресса участвует не только адренергическая, но и холинергическая система. Во время операции ряд патологических рефлексов из операционной раны, с дыхательных путей и др. воздействует на дыхание и кровообращение, замыкаясь через холинергическую систему (ваго-вагальные и прочие рефлексы). Кроме того, ацетилхолин — медиатор холинергической системы — может стимулировать выделение адреналина из мозгового вещества надпочечников, которые эмбриологически развиваются из симпатического ганглия, а все ганглии по медиаторному управлению относится к холинореакгивным системам.

Участие симпатико-адреналовой системы в хирургической агрессии не ограничивается гиперкатехоламинемией. Стрессовая реакция начинается возбуждением гипоталамо-гипофизарной зоны, в результате чего гипофиз выбрасывает АКТГ, антидиуретический, тиреотропный и другие тропные гормоны. Соответственно этому повышается гормональная активность коры надпочечников, щитовидной, поджелудочной и других желез внутренней секреции. Особое значение имеет участие гормонов коры надпочечников в общей реакции организма на операционную травму.

В крови увеличивается уровень обеих групп гормонов коры — глюкокортикоидных (кортизол и др.) и минералокортикоидных (альдостерон и др.), которые действуют соответственно своему физиологическому предназначению. Глюкокортикоиды влияют на метаболизм, воспалительную реакцию, лимфоидную ткань, а минералокортикоиды — главным образом на водно-электролитный баланс. Высокий уровень гормонов сохраняется и в первые дни послеоперационного периода.

Под суммарным воздействием гормонов коры надпочечников в условиях оперативного вмешательства существенно меняется биохимический и клеточный состав крови. Возникают лимфопения и эозинопения (из-за секвестрации эозинофилов в легких и селезенке), стимулируется выброс эритроцитов и тромбоцитов. Происходят изменения в пищеварительной системе: наблюдаются повышенная секреция желудочного сока и наклонность слизистой оболочки к аутолизу (могут возникнуть стрессовые эрозии и язвы).

Существенно меняется метаболизм, в частности возникает гиперкалиемия, гипергликемия, усиливается катаболизм белков и жиров, метаболический ацидоз вначале сопровождается респираторным алкалозом и др. Нарушается мочеобразование: увеличивается реабсорбция Na+ и воды, повышается экскреция К+, сокращается диурез.

Таким образом, наблюдается отчетливый синергизм между действием гормонов коры и мозгового вещества надпочечника (катехоламины). В периферических тканях гидрокортизон и адреналин действуют вполне синергично. Известно, что гидрокортизон участвует в преобразовании адреналина в норадреналин. Симпатико-адреналовая система в ходе операционного стресса «запускает» высокий уровень жизнедеятельности в организме, а гипофизарно-адренокортикальная система поддерживает этот уровень длительное время.

Этот сложный комплекс нейроэндокринной регуляции, запускающий первичные реакции операционного стресса, необходим для двух главных целей — повысить производство энергии и увеличить кровоснабжение мозга и сердца в условиях агрессии, которую организму предстоит выдержать. В начале операционного стресса происходят метаболические и функциональные сдвиги, направленные на достижение этих двух целей.

Распад глюкозы (первоначальный источник энергетических процессов в клетке) может осуществляться тремя путями: анаэробным гликолизом в цитоплазме (путь Эмбдена—Мейергофа), аэробным гликолизом в митохондриях (продолжение предыдущего, или цикл Кребса) и прямым окислением, также происходящим в цитоплазме аэробным путем (пентозный цикл Варбурга, или гексозомонофосфатный шунт).

Перечисленными тремя путями из одной молекулы глюкозы образуется АТФ как источник энергии, но в разных количествах:

 1) при первом (анаэробном) пути, когда глюкоза распадается до молочной и пировиноградной кислот, образуются 2 молекулы АТФ;

2) при втором (аэробном) пути, когда образовавшиеся на предыдущем этапе молочная и пировиноградная кислоты вступают в цикл Кребса, образуется 36 молекул АТФ;

3) при третьем (прямое окисление, пентозный цикл, когда в процесс образования энергии вовлекаются липиды) получается около 117 молекул АТФ.

Реакция организма на хирургическую агрессию сопровождается ростом энергетических процессов и высоким катаболизмом. Повышенный расход энергетических веществ при этом неизбежен, и если нет их внешнего поступления, то истощаются запасы организма. Подобное состояние повышенного расхода энергии в ответ на операционную травму реализуется через стимуляцию симпатико-адреналовой системы.

Главным энергетическим «сырьем» организма являются глюкоза и ненасыщенные жирные кислоты. Адреналин повышает уровень глюкозы в крови, стимулируя распад гликогена в печени, и мобилизует жирные кислоты из липидов, активизируя все три процесса образования энергии через биологическое окисление. Установлено, что в условиях операционной агрессии в крови резко возрастает уровень глюкозы и свободных жирных кислот, которые содержатся лавным образом в триглицеридах — основном депо их. Триглицериды находятся в организме преимущественно в виде липопротеидов низкой плотности (бета-липопротеидов), поступающих в кровь при стрессовом состоянии в больших количествах.

Таким образом, в усилении энергетического метаболизма при операционном стрессе участвует не только углеводная система гликоген — глюкоза, но и фосфолипидный метаболизм, причем он покрывает около половины энергетических трат при стрессе.

Реализация второй цели стрессовой стимуляции симпатико-адреналовой системы — увеличение кровоснабжения мозга и миокарда — происходит путем усиления и учащения сердечных сокращений, а также спазма артериол всех органов и тканей под действием катехоламинов. Этот спазм ограничивает кровоснабжение большинства органов, но мозг и миокард кровоснабжаются в избытке, поскольку на их артериолы катехоламины не действуют.

Если такое обкрадывание второстепенных структур продолжается кратковременно, то оно физиологически оправдано: в условиях внезапной агрессии важнее, чтобы центры выжили и могли бы управлять пусть даже полуголодными, но все же функционирующими органами. Но распределение продукции — дело тонкое, и если производители энергии и необходимых веществ слишком долго остаются голодными, это в конце концов сказывается и на центральных структурах. Любое стрессовое состояние, в том числе операционное, рано или поздно имеет такой финал, если не была предпринята коррекция в ходе его развития.

Второй этап стресса — поражение тканей. Вызванный катехоламинами спазм артериол, предназначенный для централизации кровотока, замедляет капиллярный кровоток в тканях, но кровоток через артериовенозные анастомозы возрастает. Благодаря этому периферическое сопротивление повышается не слишком резко, а венозный возврат крови к сердцу в начале стрессовой реакции оказывается достаточным.

Однако вскоре возникают реологические расстройства кровотока, связанные с его замедлением в капиллярных системах. Отмечаются агрегация клеток крови, ее секвестрация в капиллярных системах, вследствие чего: 1) возникает гиповолемия, усиливающая реологические расстройства; 2) ишемия различных органов и тканей, где произошла секвестрация, нарушает их функцию; 3) развиваются метаболический ацидоз, электролитные нарушения, образуются биологически агрессивные метаболиты, проникающие в общий кровоток через еще функционирующие сосудистые пути; 4) микроагрегаты клеток крови дают начало синдрому РВС, который в зависимости от состояния других систем организма может вести к ишемическому микротромбозу органов и тканей, коагулопатическому кровотечению.

Одним из первых органов, которые поражаются в результате реологических расстройств крови вследствие гиперкатехоламинемии, являются легкие.

Дыхательная недостаточность вносит свой вклад в нарастающее ухудшение метаболизма.

Нарушение метаболизма не только ведет к изменению КОС и электролитного равновесия, но и поражает реакции биологического окисления, которые первыми включаются в стрессовое состояние, чтобы увеличить продукцию энергии. Пока ткани получают достаточное количество кислорода, образование энергии идет по первому — второму пути (Эмбдена — Мейергофа — Кребса) с продукцией 38 молекул АТФ из 1 молекулы глюкозы. Однако ишемия тканей, дыхательная недостаточность сокращают поступление кислорода в ткани и клетки, и образование энергии останавливается на рубеже, с которого начинается аэробный цикл Кребса. Появляется гипоксический избыток лактата, усиливается метаболический ацидоз, сокращается производство энергии, так как на этом пути биологического окисления образуются лишь 2 молекулы АТФ. По избытку лактата можно даже в какой-то мере приближенно судить о тяжести стресса.

Избыток Н+ способствует выходу из клеток К+ и до тех пор, пока не страдают почки, они удаляют из организма избыток внеклеточного калия. Чем более выражен операционный стресс, тем большей степени достигает гипокалиемия.

Электролитный баланс существенно зависит от уровней антидиуретического гормона гипофиза и альдостерона, которые включаются не только как первичная стрессовая реакция (см. выше), но и как ответ на гиповолемию, возникающую на втором этапе операционного стресса. Диурез сокращается, тканевая гипергидратация, гипокалиемия и гипернатриемия усиливаются.

Как уже отмечалось, в ходе стрессовой реакции фосфолипидный метаболизм под действием катехоламинов резко усиливается, чтобы увеличить производство энергии из ненасыщенных жирных кислот. В связи с этим возникает опасный побочный эффект — меняются свойства клеточных мембран, потому что их основу составляют фосфолипиды. Вместе с сокращением содержания фосфолипидов нарушается и уровень холестерина, который участвует в поддержании целостности, проницаемости и функциональной активности мембран. Течение операционного стресса сопровождается морфологическим и функциональным поражением клеточных мембран, вследствие чего меняется ультрамикроструктура органов и снижаются их функциональные возможности.

Видимо, в первую очередь в этот процесс вовлекаются легкие, потому что поражение фосфолипидов при стрессе сказывается не только на их клеточных мембранах, но и на состоянии сурфактантной системы, основу которой составляет фосфолипиддипальмитоловый лецитин. Из-за этого страдает растяжимость легких, увеличивается их проницаемость, нарастает интерстициальный отек.


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.