Осуществление управляемых термоядерных реакций в установках типа «ТОКАМАК» — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Осуществление управляемых термоядерных реакций в установках типа «ТОКАМАК»

2020-04-01 59
Осуществление управляемых термоядерных реакций в установках типа «ТОКАМАК» 0.00 из 5.00 0 оценок
Заказать работу

 

Физики настойчиво ищут путей овладения энергией термоядерных реакций синтеза. Уже сейчас такие реакции реализуются в различных термоядерных установках, но выделяющаяся в них энергия еще не оправдывает затраты средств и труда. Другими словами, существующие термоядерные реакторы пока экономически не выгодны. Среди различных программ термоядерных исследований в настоящее время наиболее перспективной считается программа, основанная на реакторах типа токамак. Первые исследования кольцевых электрических разрядов в сильном продольном магнитном поле были начаты в 1955 г. под руководством советских физиков И.Н.Головина и Н.А.Явлинского. Построенная ими тороидальная установка была довольно крупной даже по современным масштабам: она была рассчитана на разряды с силой тока до 250 кА. И.Н.Головин предложил для таких установок название «токамак» (токовая камера, магнитная катушка). Это название используется физиками всего мира.

До 1968 г. исследования на токамаках развивались главным образом в Советском Союзе. Сейчас в мире более 50 установок типа токамак.

На рисунке 1 изображена типичная конструкция токамака. Продольное магнитное поле в нем создается катушками с током, охватывающими тороидальную камеру. Кольцевой ток в плазме возбуждается в камере как во вторичной обмотке трансформатора при разрядке батареи конденсаторов через первичную обмотку 2. Плазменный шнур заключен в тороидальную камеру – лайнер 4, изготовленный из тонкой нержавеющей стали толщиной в несколько миллиметров. Лайнер окружен медным кожухом 5 толщиной в несколько сантиметров. Назначение кожуха – стабилизировать медленные длинноволновые изгибы плазменного шнура.

 

 

Эксперименты на токамаках позволили установить, что время удержания плазмы (величина, характеризующая длительность сохранения плазмой необходимой высокой температуры) пропорциональна площади сечения плазменного шнура и индукции продольного магнитного поля. Магнитная индукция может быть весьма большой при использовании сверхпроводящих материалов. Другая возможность повышения времени удержания плазмы состоит в увеличении поперечного сечения плазменного шнура. Это значит, что необходимо увеличить размеры токамаков. Летом в 1975 году в Институте атомной энергии имени И.В. Курчатова вступил в строй самый крупный токамак – Т-10. В нем получены следующие результаты: температура ионов в центре шнура 0,6 – 0,8 кЭв, средняя концентрация частиц 8.1019 м-3, энергетическое время удержания плазмы 40 – 60 мс, основной параметр удержания nt~(2,4-7,2).1018 м-3.с.

Более крупными установками являются так называемые демонстрационные токамаки, которые вступили в строй до 1985 года. Токамаком такого типа является Т-20. Он имеет весьма внушительные размеры: большой радиус тора равен 5 метрам, радиус тороидальной камеры – 2 метра, объем плазмы – около 400 кубических метров. Целью сооружения таких установок является не только проведение физических экспериментов и исследований. Но и разработка различных технологических аспектов проблемы – выбор материалов, изучение изменения их свойств при повышенных тепловых и радиационных воздействиях и т.д. Установка Т-20 предназначена для получения реакции смеси DT. В этой установке предусматривается надежная защита от мощного рентгеновского излучения, потока быстрых ионов и нейтронов. Предполагается использовать энергию потока быстрых нейтронов (1017м-2.с), которые в специальной защитной оболочке (бланкете) будет замедляться, и отдавать свою энергию теплоносителю. Кроме того, если в бланкете будет содержаться изотоп лития 36Li, то он под действием нейтронов будет превращаться в тритий, который в природе не существует.

Токамаки следующего поколения будут представлять собой уже опытно-промышленные термоядерные электростанции, и они в конечном счете должны будут производить электроэнергию. Предполагается, что они будут реакторами «гибридного типа», в которых бланкет будет содержать делящийся материал (уран). Под действием быстрых нейтронов в уране будет происходить реакция деления, что повысит общий энергетический выход установки.

Итак, токамаки представляют собой устройства, в которых плазма нагревается до высоких температур и удерживается. Как осуществляется в токамаках нагрев плазмы? Прежде всего, плазма в токамаке нагревается вследствие протекания электрического тока это, как говорят, омический нагрев плазмы. Но при очень высоких температурах сопротивление плазмы сильно падает и омический нагрев становится неэффективным, поэтому сейчас исследуются различные методы дополнительного повышения температуры плазмы, такие как инжекция в плазму быстрых нейтральных частиц и высокочастотный нагрев.

Нейтральные частицы не испытывают никакого действия со стороны магнитного поля, удерживающего плазму, и поэтому могут быть легко «впрыснуты», инжектированы в плазму. Если эти частицы обладают большой энергией, то, попав в плазму, они ионизуются и при столкновениях с частицами плазмы передают им часть своей энергии, и плазма нагревается. Сейчас достаточно хорошо разработаны методы получения потоков нейтральных частиц (атомов) с большой энергией. С этой целью с помощью специальных устройств – ускорителей – заряженным частицам сообщается очень большая энергия. Затем этот поток заряженных частиц специальными методами нейтрализуют. В результате получается поток высокоэнергетических нейтральных частиц.

Высокочастотный нагрев плазмы может осуществляться с помощью внешнего высокочастотного электромагнитного поля, частота которого совпадает с одной из собственных частот плазмы (условия резонанса). При выполнении этого условия частицы плазмы сильно взаимодействуют с электромагнитным полем, и происходит перекачка энергии поля в энергию плазмы (плазма нагревается).

Хотя программа токамаков считается наиболее перспективной для термоядерного синтеза, физики не прекращают исследований по другим направлениям. Так, последние достижения по удержанию плазмы в прямых системах с магнитными пробками вселяют оптимистические надежды на создание на основе таких систем энергетического термоядерного реактора.

Для устойчивого удержания плазмы с помощью описанных устройств в ловушке создаются условия, при которых магнитное поле нарастает от центра ловушки к ее периферии. Нагрев плазмы осуществляется с помощью инжекции нейтральных атомов.

Как в токамаках, так и в пробкотронах для удержания плазмы необходимо очень сильное магнитное поле. Однако существуют направления решения проблемы термоядерного синтеза, при реализации которых отпадает необходимость создания сильных магнитных полей. Это так называемые лазерный синтез и синтез с помощью релятивистских электронных пучков. Суть этих решений состоит в том, что на твердую «мишень», состоящую из замороженной смеси DT, со всех сторон направляют либо мощное лазерное излучение, либо пучки релятивистских электронов. В результате мишень должна сильно нагреваться, ионизоваться и в ней взрывным образом должна произойти реакция синтеза. Однако практическое воплощение этих идей сопряжено со значительными трудностями, в частности из-за отсутствия лазеров, обладающих необходимой мощностью. Тем не менее, в настоящее время интенсивно разрабатываются проекты термоядерного реактора на основе этих направлений.

К решению проблемы могут привести различные проекты. Ученые надеются, что, в конце концов, удастся осуществить управляемые реакции термоядерного синтеза и тогда человечество получит источник энергии на многие миллионы лет.

 

Проект ИТЭР

 

Уже в самом начале проектирования токамаков нового поколения стало ясно, насколько они сложны и дороги. Возникла естественная мысль о международном сотрудничестве. Так появился проект ИТЭР (Интернациональный Термоядерный Энергетический Реактор), в разработке которого участвуют объединение «Евратом», СССР, США и Япония. Сверхпроводящий соленоид ИТЭРа на основе нитрата олова должен охлаждаться жидким гелием при температуре 4 К или жидким водородом при 20 К. Увы, не сбылись мечты о более «теплом» соленоиде из сверхпроводящей керамики, который мог бы работать при температуре жидкого азота (73 К). Расчеты показали, что он только ухудшит систему, поскольку, кроме эффекта сверхпроводимости, свой вклад будет вносить и проводимость его медной подложки.

В соленоиде ИТЭРа запасается огромная энергия — 44 ГДж, что эквивалентно заряду около 5 т тротила. В целом электромагнитная система этого реактора по мощности и сложности на два порядка превзойдет самые крупные действующие установки. По электрической мощности он будет эквивалентен Днепрогэсу (около 3 ГВт), а его общая масса составит примерно 30 тыс. т.

Долговечность реактора определяет прежде всего первая стенка тороидальной камеры, находящаяся в самых напряженных условиях. Кроме термических нагрузок, она должна пропускать и частично поглощать мощный поток нейтронов. По расчетам, стенка из наиболее подходящих сталей сможет выдержать не более 5 – 6 лет. Таким образом, при заданной длительности работы ИТЭРа – 30 лет – стенку потребуется менять 5 – 6 раз. Для этого реактор придется почти полностью разбирать с помощью сложных и дорогих дистанционных манипуляторов — ведь только они смогут проникнуть в радиоактивную зону.

Такова цена даже опытного термоядерного реактора — чего же потребует промышленный?

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.