Технология приготовления почвосмесей с заданными свойствами на основе котлованных грунтов — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Технология приготовления почвосмесей с заданными свойствами на основе котлованных грунтов

2019-11-28 210
Технология приготовления почвосмесей с заданными свойствами на основе котлованных грунтов 0.00 из 5.00 0 оценок
Заказать работу

Приложение 1

Методические рекомендации по приготовлению и использованию почвогрунтов с заданными свойствами на основе котлованных грунтов и биокомпостов для целей озеленения

Нормативные показатели искусственных почвогрунтов

№ п/п Наименование параметра Норма параметра
1 Внешний вид Однородная сыпучая масса
2 Цвет От буровато-серого до темно-серого
3 Включения, % Более 0,5 см не допускаются, менее 0,5 см до 10%
4 Массовая доля воды, % не более 20
5 Гранулометрический состав  
  Содержание физической глины (частицы < 0,01 мм), % к массе От супесчаного до среднесуглинистого. 15-35
6 Размер агрегатов, см не более 1
7 Органическое вещество, % к сухой массе 4-15
8 Плотность насыпная, г/см (т/м) 0,8-1,2
9 Реакция среды:  
  рНКСl 5,5-6,0
  РНН20 6,1-7,1
10 Емкость катионного обмена, мг-экв/100 г почвы не менее 15
11 Общее содержание солей:  
  - по удельной электропроводности, mSm/см не более 3,0
  - по плотному остатку, г/л не более 3,0
12 Содержание элементов питания, мг/кг:  
  - азота (NО3 + NН4) 50-200
  - фосфора (Р2О5) по Кирсанову или Чирикову 100-200
  - калия (К2О) по Кирсанову или Чирикову 100-200
13 Валовое содержание тяжелых металлов, мг/кг: Не выше 0,5 ОДК для свинца и 0,9 ПДК (ОДК) для остальных металлов
  медь не более 117
  ЦИНК не более 198
  свинец не более 65
  ртуть не более 2
  свинец + ртуть не более 60+1
  кадмий не более 2
  никель не более 70
  мышьяк не более 9
  селен не более 2
14 Содержание подвижных форм тяжелых металлов, извлекаемых ацетатно-аммонийным буфером с рН 4,8, мг/кг:  
  медь не более 2-3
  цинк не более 23
  свинец не более 3
  никель не более 4
  марганец не более 100
15 Бенз(а)пирен, мг/кг не более 0,02
16 Пестициды (остатки), мг/кг не более 0,2
17 Удельная эффективная активность естественных радионуклидов, Бк/кг не более 370
18 Удельная эффективная активность техногенных радионуклидов, Бк/кг не допускается
19 Патогенные микроорганизмы, в том числе:  
  - сальмонеллы в 25 г не допускается
  - яйца гельминтов (жизнеспособных), шт/кг не допускается
20 Нефтепродукты, мг/кг не более 300
21 Семена сорных растений шт/кг не более 15

Указанным требованиям соответствуют почвосмеси, приготовленные из котлованных грунтов легкого и среднего гранулометрического состава (флювиогляциальные пески и аллювиальные суглинки). Норма внесения биокомпоста соответствующего требованиям, приведенным в таблице 2, должна составлять от 15 до 20% от массы котлованного грунта. Если котлованный грунт имеет легкий гранулометрический состав и оптимальные водно-физические свойства, то норму внесения биокомпоста можно снизить, но не менее 10% от массы грунта.

Таблица 2

Нормативные показатели биокомпостов

N п/п Наименование показателей Норма параметра
1 Внешний вид однородная сыпучая масса.
2 Размер агрегатов не более 1 см
3 Включения камней и других посторонних предметов более 0,5 см не допускаются, менее 0,5 см до 5%
4 Сухое вещество, % не менее 40
5 Органическое вещество, % не менее 20
6 Доля гуминовых веществ, % от общего содержания органического вещества не менее 15
7 Соотношение С:Н не более 30
8 Общий азот, % на сухое вещество не менее 1,5
9 Фосфор, % на сухое вещество не менее 0,1
10 Калий, % на сухое вещество не менее 0,2
11 Реакция среды:  
  рН 5,0-6,0
  рН 6,0-7,5
12 Фенолы, мг/кг не более 15
13 Полициклические углеводороды, мг/кг не более 0,02
14 90Sr, Ки/кг не более 5 ´ 10(-10)
15 137Сs, Ки/кг не более 5 ´ 10(-7)
16 Сумма радионуклидов, Ки/кг не более 1 ´ 10(-8)
17 Тяжелые металлы, мг/кг, не более  
  Cd 20
  Со 100
  Сг 750
  Си 1000
  Н g 16
  М n 3000
  M о 50
  Ni 300
  Pb 750
  Zn 2500
18 Жизнеспособные яйца гельминтов, шт/кг отсутствуют
19 Титр кишечной палочки, не менее 0,01

Норма внесения дополнительного азота в виде минеральных удобрений должна определяться для каждой партии грунта, на основе его агрохимического анализа. В зависимости от содержания доступного растениям азота в котлованном грунте количество азотных удобрений должно быть таким, чтобы довести обеспеченность готовой почвосмеси до 150-200 мг/кг. Это имеет большое значение особенно на начальной стадии развития газонных трав.

Приложение 2

Методические рекомендации по приготовлению и использованию биокомпостов на основе лиственного опала древесных культур

Требования к условиям компостирования при приготовлении биокомпостов на основе лиственного опада древесных культур

2.1. Химическая активность микроорганизмов зависит от условий их культивирования (состава питательных субстратов, реакции среды, температуры, аэрации, состава газов, интенсивности перемешивания, окислительно-восстановительных режимов и др. факторов). Подобранные и стандартизированные условия культивирования микроорганизмов в смесях для компостирования позволяют получать конечный продукт требуемого качества.

В результате наших исследований был определен оптимальный режим культивирования микроорганизмов, позволяющий получить конечный продукт с заранее известными характеристиками.

2.2. Влажность компонентов и исходной смеси

В случае, когда в исходной смеси присутствуют и навоз и птичий помет, то влажность навоза должна составлять не более 75%, а оптимальная влажность птичьего помета не более 50%. Если влажность азотсодержащих компонентов смеси выше указанных величин, то стабилизировать влажность исходной смеси можно добавлением сухого лиственного опада. Начальная влажность исходной смеси навоза (помета) и листьев может составлять до 70-75%, а в процессе компостирования она снижается до оптимальной 60-65%. В процессе созревания биокомпоста температура еще более снижается (до 50-55%).

Компостные смеси с содержанием лиственного опада более 50% от массы требовали искусственного увлажнения перед загрузкой в биоферментер (до влажности 70%). В процессе биоферментации происходила интенсивная потеря влаги компостной смесью в среднем на 15-20%.

Для улучшения сроков хранения готового продукта рекомендуется после выгрузки подсушивать биокомпост до влажности 20-25%. При данной влажности биокомпост хорошо хранится в течение длительного периода.

2.3. Аэрация

Качество аэрации компостируемой смеси зависит не только от мощности продува, но и от структуры самой исходной смеси, представляющей собой трехфазную систему, состоящую из твердой, жидкой и газообразной фаз. Минимальное свободное газовое пространство смеси должно составлять не менее 30%, т.е. смесь должна обладать достаточно хорошей пористостью.

В процессе компостирования лиственного опада очень важно равномерное перемешивание всего объема компостной массы, что достигается работой перемешивающего устройства биоферментера.

Для нормальной работы аэробной микрофлоры в компостируемой смеси концентрация кислорода не должна быть ниже 10-12%, это особенно важно в течение первых 3-4 суток.

Скорость проникновения воздушной смеси в компостируемую смесь должна быть на уровне 0,5 мм/с (1,6 м/ч), это дает возможность в течение суток произвести девятикратный воздухообмен.

После прохождения температурного максимума смеси принудительную аэрацию можно отключить, оставив только перемешивание. Воздухообмена за счет перемешивания компостируемой смеси будет достаточно для завершающей стадии процесса - созревания биокомпоста.

2.4. Температура субстрата и подаваемого воздуха

Компостные смеси на основе лиственного опада древесных культур с добавлением навоза и птичьего помета характеризуются интенсивным разогревом. При этом максимальные температуры процесса (60-65°С) достигаются на 6-7 сутки, затем происходит созревание биокомпоста, сопровождающееся постепенным снижением температуры.

Оптимальными температурами для завершения цикла компостирования лиственного опада являются температуры 60-65°С.

Для инициации процесса компостирования рекомендуется в начале процесса (на 1-1,5 суток) подавать в биоферментеры воздушную смесь, нагретую до 40°С, после чего можно подавать воздух обычной (комнатной температуры), с обязательным перемешиванием компостируемой массы.

При достижении равномерной по всему объему смеси температуры 60°С полная гибель патогенной микрофлоры наблюдалась через трое суток, а потеря всхожести сорняков наблюдалась через 1,5 суток.

2.5. Отношение углерода к азоту

Наилучшее соотношение углерода к азоту (от 20 до 28) отмечалось в смесях следующего состава: 1) 33% листьев:33% навоза: 33% помета; 2) 50% листьев: 25% навоза: 25% помета. Исходные компостные смеси обеспечивали хорошую скорость компостирования и наилучшее качество готового биокомпоста.

Увеличение в исходных смесях соотношения C:N до 33 (66% листьев:16% навоза:16% помета) и до 55 (83% листьев:8% навоза:8% помета) приводило к значительному увеличению времени компостирования и получению био-компостов с посторонними включениями в виде черешков неразложившихся листьев. Биокомпосты, приготовленные на основе смесей с повышенным содержанием листьев, требуют дополнительных затрат на контрольную сепарацию и дают значительное количество (до 35%) отходов.

В исходных смесях с повышенным содержанием лиственного опада (свыше 50%) для получения оптимального соотношения C:N рекомендуется добавлять 0,5-0,8% азота в виде минеральных удобрений.

2.6. Физические и химические свойства исходной смеси

Дробление лиственного опада перед смешиванием с навозом и пометом способствовало более равномерному нагреву смеси, уменьшало избыточное высушивание вследствие нарушения капиллярной системы и предохраняло компостируемую массу от избыточной потери тепла.

Механическое дробление листвы обеспечивало нагрев компостируемой массы, имеющей положительную температуру, в среднем на 5°С больше, чем нагрев компостных смесей содержащих не дробленые листья.

Рекомендуемая степень размельчения листьев 5-7 мм. Измельчение листьев на частицы менее 5 мм приводило к повышению плотности и ухудшению порозности компостной смеси, что приводило к ухудшению поступления кислорода в объем, уменьшению выделения СО2 из объема и снижению скорости компостирования.

Дробление листьев позволило почти на 25% увеличить выход биокомпоста с единицы массы перерабатываемой смеси. При этом количество отходов при контрольной сепарации снижалось с 25-35% до 10-15% от веса перерабатываемой массы. Отходы, получаемые при контрольной сепарации, рекомендуется возвращать в биоферментер к исходной смеси в качестве бактериальной затравки.

Нейтральная или слабощелочная реакция среды исходных смесей может быть стабилизирована использованием в качестве минеральных добавок физиологически кислых азотных удобрений.

2.7. Минеральные добавки

При производстве биокомпостов на основе лиственного опада древесных культур, содержащего большое количество углерода, недостаток азота в исходной смеси можно компенсировать внесением 0,5-0,8% азотных удобрений (аммиачной селитры, мочевины), что приводит к ускорению процесса компостирования и получению биокомпоста более сбалансированного по питательному составу. Для получения более сбалансированного по элементам питания биокомпоста и увеличения в нем доступного фосфора рекомендуется добавлять в исходные смеси 0,5-1,0% фосфоритной муки (двойного суперфосфата, фосфогипса).

2.8. Время компостирования

Наиболее эффективно основная фаза микробиологического процесса (термическая фаза) осуществляется за 60-70 часов. Сокращение времени пребывания органического сырья в биоферментере до 60 часов приводит к получению некачественного биокомпоста, зараженного патогенной микрофлорой. Напротив, увеличение времени компостирования свыше 70 часов приводит к ухудшению питательных свойств биокомпоста, потерям питательных элементов.

Полностью готовый биокомпост на основе лиственного опада древесных культур получается на 10-14 сутки.

Технологическая схема производства биокомпостов на основе лиственного опада древесных культур, навоза и птичьего помета рекомендуется осуществлять в следующей последовательности:

- измельчение листвы до частиц размером 5-7 мм;

- внесение минеральных добавок, стимулирующих ее разложение;

- смешивание листвы с навозом и птичьим пометом;

- подача полученной смеси в ферментер;

- подача нагретого воздуха с постоянным перемешиванием;

- после разогрева смеси до 50°С, подача воздуха комнатной температуры;

- созревание компоста, сопровождающееся снижением температуры смеси;

- выгрузка и контрольная сепарация биокомпоста.

Полученные биокомпосты на основе лиственного опада древесных культур с добавлением навоза и птичьего помета представляли собой рыхлую массу темно-бурого цвета, состоящую из частиц размером от 1-2 мм до 0,6 см, не обладающую неприятными запахами. В биокомпостах вариантов 33% листьев + 33% навоза + 33% птичьего помета и 50% листьев + 25% навоза + 25% птичьего помета, листва подвергалась полному микробиологическому разложению и морфологически выражалась незначительно.

В биокомпостах вариантов 66% листьев + 16% навоза + 16% птичьего помета прослеживались кусочки листовых пластинок и черешки листьев. При содержании в исходных смесях более 50% лиственного опала требуется контрольная сепарация готового биокомпоста для удаления крупных, неразложившихся частиц органического вещества. Просеянные фрагменты рекомендуется возвращать в рецикл.

В целом при соблюдении рекомендуемых условий твердофазной аэробной ферментации для получения качественных биокомпостов рекомендуется следующий состав исходных смесей - не более 50% лиственного опада и остальная часть - смесь навоза крупного рогатого скора и птичьего помета в равной пропорции.

Приложение 3

Методические рекомендации по приготовлению и использованию биокомпостов на основе осадков сточных вод, листового опала и древесных опилок

Требования к условиям компостирования при приготовлении компостов на основе осадков сточных вод, листового опада и древесных опилок

Аэрация

При компостировании осадка сточных вод методом твердофазной аэробной ферментации главным фактором, лимитирующим разогрев субстрата, на наш взгляд, является недостаточная аэрация в противовес имеющемуся в литературе мнению о недостатке легкоразлагаемых веществ в термофильно сброженном осадке и его неспособности набрать высокую температуру в процессе компостирования.

Минимальное свободное газовое пространство исходной смеси должно составлять не менее 30%. В процессе ферментации необходимо добиваться равномерного проникновения кислорода в компостируемую смесь. Биоферментер должен быть оборудован регулируемой принудительной вентиляцией и механизмом перемешивания субстрата. Неперерывное перемешивание способствует образованию и схлопыванию микро- и макропустот, в которых за счет ваккум-эффекта происходит засасывание нагретого кислородсодержащего газа с температурой около 60°С. Это обеспечивает не только хорошую аэрацию, но и быстрый разогрев всей массы перерабатываемого сырья.

Скорость проникновения воздушной смеси в компостируемую массу должна быть на уровне 0,3 мм /сек (около 1 м/час).

Концентрация кислорода в компостируемой смеси не должна опускаться ниже 8-10%.

Потребность в кислороде неодинакова в течение всего процесса ферментации: она низка в мезофильной стадии и возрастает до максимума в термофильной стадии. В процессе остывания и созревания компоста аэрация не требуется.

Отношение углерода к азоту

Исходные смеси для компостирования, в состав которых входит 30-50% влагопоглощаюших материалов (древесные опилки и листва) обеспечивают получение наиболее качественных биокомпостов на основе осадков сточных вод. Для компостирования методом твердофазной аэробной ферментации рекомендуется использовать сброженный осадок сточных вод, так как свежий осадок обладает неблагоприятными водно-физическими свойствами.

Увеличение в исходных смесях доли осадка сточных вод (до 70-80%) признано нецелесообразным из-за потерь элементов питания с влагой и в газообразной форме. Увеличение доли древесных опилок и листвы в исходных смесях замедляет процесс ферментации (созревания) биокомпоста и снижает его питательную ценность для растений.

Оптимальное соотношение углерода к азоту в смесях для приготовления биокомпостов методом твердофазной аэробной ферментации на основе осадков сточных вод составляет C:N = 13-16. Расширение и сужение соотношение между углеродом и азотом увеличивает время компостирования и снижает качество готового компоста.

Минеральные добавки

С увеличением в исходной смеси доли компонентов, содержащих большое количество целлюлозы и лигнина (свыше 50% древесных опилок и листвы), получить качественный биокомпост можно дополнительным обеспечением питания микрофлоры компоста, что достигается внесением азота и фосфора. Азот и фосфор можно давать в виде минеральных удобрений (азотные - мочевина, аммиачная селитра; фосфорные - фосфоритная мука, двойной суперфосфат). К измельченным опилкам и листве перед загрузкой в биоферментер рекомендуется добавить 1% азота и 0,25% фосфора в расчете на сухую массу.

Время компостирования

При достижении равномерной по всему объему компостируемой смеси температуры 50-55°С полная дегельминтизация наступает через четверо суток, а потеря всхожести семян сорных растений через 4-5 дней. Сигналом готовности биокомпоста является падение температуры в смеси до 25-30°С, которая контролируется при помощи термодатчиков совмещенных с влагомерами.

Основная фаза микробиологического процесса (термическая фаза) осуществляется за 3-5 суток. Биокомпост бывает полностью готов к использованию на 8-10 сутки.

Технологическая схема производства биокомпостов на основе осадков сточных вод, древесных опилок и листвы рекомендуется осуществлять в следующей последовательности:

- измельчение древесных опилок и листвы до размера частиц 5-10 мм;

- внесение минеральных добавок, стимулирующих ее разложение;

- перемешивание опилок и листвы;

- смешивание опилок и листвы со сброженным осадком сточных вод;

- подача полученной смеси в ферментер;

- подача нагретого воздуха с постоянным перемешиванием;

- после разогрева смеси, чередование в подаче воздуха;

- созревание компоста, сопровождающееся снижением температуры смеси;

- выгрузка и контрольная сепарация биокомпоста.

Полученные биокомпосты на основе сброженного осадка с добавлением древесных опилок и листового опала представляли собой рассыпчатую нелипнущую рыхлую массу темно-серо-буровато-коричневого цвета, состоящую из частиц размером от 1-2 мм до 0,6 см, практически не обладающую неприятными запахами. В биокомпостах вариантов 66% осадка + 16% листьев + 16% опилок и 83% осадка + 8% листьев + 8% опилок, целлюлозосодержащие компоненты почти полностью разложились и морфологически выражались незначительно. В остальных биокомпостах вариантов 33% осадка + 33% листьев + 33% опилок и 50% осадка + 25% листьев + 25% опилок, листва и особенно древесные опилки прослеживались. При содержании в исходной смеси менее 60% осадка сточных вод требуется контрольная сепарация готового биокомпоста для удаления крупных, неразложившихся частиц органического вещества. Просеянные крупные фрагменты рекомендуется возвращать в рецикл.

В целом при вышеизложенных условиях биокомпостирования для получения качественного продукта рекомендуется следующий состав исходных смесей - не менее 60% сброженного осадка сточных вод и по 20% листьев и опилок.

Приложение 4

Методические рекомендации по приготовлению и использованию биокомпостов на основе древесных опилок и отходов овощехранилищ

1. Методические рекомендации по приготовлению и использованию биокомпостов на основе древесных опилок и отходов овощехранилищ

1.1. Технология приготовления биокомпостов на основе древесных опилок и отходов овощехранилищ методом твердофазной аэробной ферментации

Один из видов хозяйственно-бытовых отбросов жизнедеятельности крупных городов, образующийся вблизи деревообрабатывающих предприятий и овощехранилищ это древесные опилки и отходы овощей. Отходы овощехранилищ содержат большое количество органического вещества высокой влажности и поэтому быстро загнивают, выделяя неприятный запах, что является благоприятной средой для размножения мух, грызунов, а также содержат значительное количество болезнетворных микроорганизмов и яиц гельминтов. При несвоевременном удалении отходов овощехранилищ нарушается санитарное состояние населенных мест и пригородных зон, где расположена основная масса полигонов (свалок).

Вместе с тем органическое вещество, содержащееся в отходах, можно использовать в качестве удобрений в городском озеленении.

Для охраны водных ресурсов, защиты окружающей природной среды, а также для решения проблем санитарной очистки городов в мировой и отечественной практике ведется разработка и широкое внедрение различных технологий переработки органического сырья. Ведутся разработки новых альтернативных методов обезвреживания и утилизации отходов.

Задачей ближайших лет является замена прямого вывоза отходов овощехранилищ и деревообрабатывающих предприятий на ускоренное компостирование методом твердофазной аэробной ферментации. Эта технология должна активно внедряться в крупных городах, в которых полигоны для захоронения отходов потребления расположены на значительном расстоянии от города.

1.2. Утилизация древесных опилок и отходов овощехранилищ позволит решить ряд важнейших экологических проблем города Москвы:

- исключить образование несанкционированных свалок, загрязняющих городские почвы и грунтовые воды.

- наладить ежедневный бесперебойный вывоз органических отходов овощехранилищ за пределы города, или к местам производств по твердофазной аэробной ферментации;

- повысить экологическую безопасность и срок эксплуатации уже существующих полигонов, исключив на них размещение опасных в санитарном отношении органических отходов.

- снизить экологический ущерб от выбросов мусоровозного автотранспорта.

- возвратить в биологический круговорот, в частности в городские почвы органическое вещество и элементы питания растений, уменьшив при этом экологический ущерб.

- обеспечить рентабельность и экономическую эффективность процесса санитарной очистки.

Требования к условиям компостирования при приготовлении биокомпостов на основе древесных опилок и отходов овощехранилищ

2.1. Ha скорость процесса компостирования, а также на качество получаемого компоста влияет ряд факторов, частью которых можно управлять, добиваясь получения конечного продукта заданного качества, что очень важно в промышленном производстве.

В результате наших исследований был определен оптимальный режим культивирования микроорганизмов, позволяющий получить конечный продукт с заранее известными характеристиками.

2.2. Влажность компонентов и исходной смеси

Отходы овощных культур характеризуются повышенным содержанием воды, поэтому при чрезмерном содержании влаги в исходной смеси поры аэрации внутри компостируемой смеси заполняются водой, затрудняется проникновение воздушной смеси, развиваются анаэробные процессы с участием гнилостных бактерий, происходит гниение компоста. В связи с этим для приготовления исходных смесей для компостирования необходимо использовать отходы овощехранилищ не затронутые процессами гниения, влажностью не более 70%.

Повышенная влажность отходов овощехранилищ является одним из главных лимитирующих факторов в процессе компостирования методом твердофазной аэробной ферментации.

Снижения влажности смеси в процессе ферментации можно добиться следующими приемами:

- увеличением естественного испарением влаги с поверхности субстрата;

- принудительной аэрацией компостируемой массы;

- изменением структурного состояния исходных компонентов как в процессе подготовки смеси, так и во время компостирования.

Для оптимального течения процессов компостирования древесных опилок с овощными отходам методом твердофазной аэробной ферментации влажность смеси необходимо поддерживать в пределах 60-65%.

При этом доля древесных опилок в исходных смесях должна составлять не менее 50%.

В процессе компостирования субстратов с отходами овощехранилищ можно поддерживать оптимальную влажность смеси путем ее интенсивного перемешивания, так как продув при высокой температуре вызывает ее сильное высыхание.

При получении готового биокомпоста рекомендуется провести его подсушивание до влажности 30-35%. Более влажные биокомпосты в течение короткого промежутка времени покрывались грибной плесенью и теряли свои качественные показатели.

2.3. Аэрация

В процессе твердофазной аэробной ферментации аэрация компостируемого субстрата осуществляется принудительно путем подачи воздушной смеси и интенсивного перемешивания.

Минимальное свободное газовое пространство для смесей с древесными опилками и отходами овощехранилищ должно составлять 20-25%. Равномерность проникновения кислорода в компостируемую смесь достигается перемешиванием всего объема перерабатываемого субстрата.

Перемешивание субстрата на основе древесных опилок и отходов овощехранилищ также для распространения по всему объему перерабатываемой массы термофильных бактерий и новообразовавшегося органического вещества. Поскольку образование гумуса является автокаталитическим процессом, то перемешивание способствует увеличению содержания этого самого ценного компонента органического удобрения.

Концентрация кислорода в компостируемой смеси должна находиться на уровне 10-15%, а плотность смеси не более 0,8 т/м3. Скорость проникновения воздуха в смесь 0,4 мм/с. Исследования показали, что в течение суток происходит семикратный воздухообмен.

Потребность в кислороде при компостировании древесных опилок и отходов овощехранилищ велика в течение всего процесса биоферментации.

2.4. Температура субстрата и подаваемого воздуха

В процессе биотермической переработки температура в компостируемой смеси поднимается до 50-55°С.

В смесях состава 50% древесные опилки:50% отходы овощехранилищ и 62,5% отходов овощехранилищ:37,5% древесных опилок происходит значительное повышение температуры (на вторые сутки до 18°С, а на восьмые и девятые - до 50-55°С).

Смеси с преобладанием отходов овощехранилищ (75% отходов овощехранилищ:25% древесных опилок и 87,5% отходов овощехранилищ:12,5% древесных опилок), разогреваются значительно медленнее и до температуры не выше 45°С на 9-10 сутки.

Подача теплого воздуха нагретого до 50-60°С воздуха в биоферментер приводит к ускорению разогрева перерабатываемого субстрата до 55-60°С, это не только увеличивает скорость компостирования, но и обеспечивает дополнительную дезинфекцию биокомпоста, что особенно важно при использовании отходов овощехранилищ затронутых процессами гниения.

Для инициации разогрева смеси в первые сутки рекомендуется подавать в субстрат воздушную смесь, нагретую до 50°С, после повышения температуры субстрата до 40°С, необходимо чередовать подачу нагретого воздуха с интервалом порядка 6 часов для более полного использования ферментативного аппарата термофильной микрофлоры.

Опытным путем определено, что оптимальными температурами, необходимыми для осуществления полного цикла микробиологического разложения исходной смеси на основе отходов овощехранилищ и древесных опилок являются температуры от 50 до 55°С. При снижении температуры в биоферментере ниже 50°С (в смесях с повышенным содержанием отходов овощехранилищ) резко увеличивается время пребывания исходного сырья в биоферментере, в результате чего ухудшается качество готового продукта и теряются питательные вещества. Дегельминтизация смесей в биоферментерах наиболее активно протекает при температуре выше 50°С (термофильный режим), а мобилизация и сохранение подвижных форм питательных веществ - при 30-35°С (мезофильный режим).

2.5. Отношение углерода к азоту

Широкое соотношение углерода к азоту в компостной смеси 50% древесных опилок:50% отходов овощехранилищ (C:N = 46,3) не приводит к увеличению времени компостирования из-за недостатка углеродсодержашеи пиши для микроорганизмов, вследствие более низкой влажности смеси и активного перемешивания. Смеси состава 37,5% древесных опилок: 62,5% отходов овощехранилищ; 25% древесных опилок:75% отходов овощехранилищ; 12,5% древесных опилок:87,5% отходов овощехранилищ обладают более благоприятным соотношением C:N, что, вместе с тем, не отразилось на повышении активности термофильной микрофлоры из-за повышенной влажности исходного субстрата.

При производстве биокомпостов с влагопоглощающими материалами, содержащими большое количество углерода, таких как древесные опилки, листья, кора, лигнин можно компенсировать недостаток азота внесением 1,5- 2,0% азотных удобрений, что приводит к ускорению процесса компостирования.

2.6. Физические и химические свойства исходной смеси

Для ускорения биохимических процессов, происходящих при компостировании необходимо использовать предварительно измельченные древесные опилки и отходы овощехранилищ для улучшения перемешивания, аэрации, получения гомогенной исходной смеси.

Дробленый материал равномернее нагревается, противостоит излишнему высушиванию (вследствие нарушения капиллярной системы) и предохраняют массу от потери тепла. Особое значение измельчение приобретает, если в качестве компонента биокомпостов используются отходы овощехранилищ, изначально имеющие достаточно неоднородную структуру..

Для механизированных установок по биоферментации с перемешиванием и принудительной аэрацией наилучшими размерами частиц являются 5-8 мм.

На качество и интенсивность протекания биотермического процесса существенно влияет однородность смешивания компонентов исходной смеси. При наличии в исходной смеси "очагов" из отходов овощехранилищ и влагопоглощающего материала (древесные опилки) микробиологические процессы протекают только по зоне контакта компонентов, а основная масса компостной смеси находится в анаэробном состоянии, что способствует ее загниванию и разрушению. Поэтому рекомендуется равномерное смешивание отходов овощехранилищ с древесными опилками перед помещением субстрата в биоферментер.

В начале процесса компостирования основное участие принимают бактерии. Поэтому важно, чтобы исходная смесь для компостирования имела кислую реакцию среды, благоприятную для развития микроорганизмов. Несмотря на то, что исходные смеси для компостирования на основе осадков сточных вод имели слабокислую реакцию среды, процесс компостирования развивается довольно интенсивно. Это связано со значительным образованием аммиака в начале процесса компостирования и усреднения слабо кислой реакции среды компостируемой смеси.

2.7. Минеральные добавки

Для получения качественного по агрохимическим свойствам, сбалансированного по элементам питания удобрения (биокомпоста) на основе осадка сточных вод, интенсификации микробиологических процессов и уменьшения потерь азота в исходные смеси для компостирования рекомендуется вносить минеральные добавки. К ним, прежде всего, относятся фосфоритная мука, порошковый суперфосфат, фосфогипс. Они активизируют процессы биотермии и гумификации смеси и не только связывают аммиачный азот, но и создают условия для поглощения его микрофлорой. Кроме того, повышается доступность фосфора для растений в этих удобрениях.

К измельченным органическим отходам рекомендуется добавлять 5-10% навоза или 1,5-2% азота с 0,5-1,0% фосфора в расчете на сухую массу для ускорения процесса компостирования и улучшения питательных свойств готового биокомпоста.

Микробный потенциал компостных смесей с использованием отходов овощехранилищ следует признать достаточно низким из-за наличия в них большого количества гнилостных бактерий, и малого количества благоприятной микрофлоры. Для соотношения в микробном пуле исходной смеси в сторону увеличения количества аэробных термофильных бактерий мы рекомендуем вносить небольшое количество подстилочного навоза в исходный субстрат (5-10% от массы). Содержащиеся в навозе микроорганизмы способствуют правильному течению процесса компостирования и замедляют процессы гниения. При содержании отходов овощехранилищ 50-60% навозные добавки в исходный субстрат не требуются, их можно заменить внесением минеральных азотных удобрений.

2.8. Время компостирования

Наиболее эффективно основная фаза микробиологического процесса (термическая фаза) осуществляется за 7-10 суток. Если сократить время пребывания органического сырья в биоферментере, то не произойдет полного цикла микробиологического разложения органического вещества, что приведет к получению некачественного биокомпоста зараженного патогенной микрофлорой. Такой биокомпост нельзя применять в качестве удобрения, он не пригоден для длительного хранения и транспортировки.

Увеличение времени процесса компостирования свыше оптимальных сроков также не приносит положительных результатов, так как в биоферментере находится уже готовый биокомпост, и дальнейшее его пребывание в зоне высоких температур значительно ухудшает его удобрительные свойства за счет потерь питательных веществ (в частности азота).

Процесс компостирования считается законченным, когда процесс разогревания прекращается, стабилизируется температура, снижается выделение углекислого газа и содержание клетчатки, а соотношение C:N становится 25 и ниже. При этом основным критерием спелости компоста является полное отсутствие резких запахов исходных компонентов.

Полностью готовый биокомпост на основе древесных опилок и отходов овощехранилищ получается на 12-13 сутки.

Технологическая схема про<


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.094 с.