Кстати, на эту тему у нас есть статья Что такое стрептококк — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Кстати, на эту тему у нас есть статья Что такое стрептококк

2019-11-19 233
Кстати, на эту тему у нас есть статья Что такое стрептококк 0.00 из 5.00 0 оценок
Заказать работу

 

К содержанию ↑

ССЫЛКИ ПО ТЕМЕ

· Как размножаются бактерии?

· Велика ли роль бактерий в жизни человека?

· Строение и среда обитания дрожжей

· Все о спорах бактерий

 

Грибок ногтей умрет навсегда! Просто подер...

 

Главврач г.Красноярск: "Не стригите грибковые ногти! На ночь капните р...

 

Открытие пенсионерки из г. Красноярск шокировало мировую медицину! "Я...

 

Статьи раздела "Бактерии"

· Рост и размножение бактерий

· Как питаются и дышат бактерии? Зачем бактериям ферменты и пигменты?

· Споры и спорообразование в жизни бактерий

· Что такое стрептококк

· Строение бактерий

 

Суставы начнут восстанавливаться сами, есл...

 

 

Лео Бокерия: Давление выше 140/90? Прекрат...

 

 

Врач Бокерия: "Вот вам мой полезный совет - чтобы

 

Самое популярное

· Все о грибке стопы: симптомы и эффективное лечение современными препаратами

· Грибок кожи головы: как распознать и лечить

· Симптомы и лечение грибка ногтей на руках (онихомикоза)

· Польза и вред кишечной палочки

· Как лечить дисбактериоз и восстановить микрофлору

ПОНРАВИЛАСЬ СТАТЬЯ?

ПОДПИШИТЕСЬ НА НАШУ РАССЫЛКУ!

Email

 

  • 4.3 / 3

 

Новые (1)

 

 

Елена Коренева2016.02.11 15:56

Спасибо за статью)

Ответить

Что еще почитать

  • Споры и спорообразование в жизни бактерий
  • Что такое стрептококк
  • Как питаются и дышат бактерии? Зачем бактериям ферменты и пигменты?
  • Рост и размножение бактерий

 

Бакте́рии (эубактерии (лат. Eubacteria), др.-греч. βακτήριον — палочка) — домен живых организмов (по трёхдоменной системе Карла Вёзе наряду с археями и эукариотами). Бактерии и археи относятся к прокариотным (безъядерным) микроорганизмам, чаще всего одноклеточным. К настоящему времени описано около десяти тысяч видов бактерий и предполагается, что их существует свыше миллиона, однако само применение понятия вида к бактериям сопряжено с рядом трудностей.

Изучением бактерий занимается раздел микробиологии — бактериология.

Содержание

[скрыть]

· 1Термин

· 2История изучения

· 3Строение

o 3.1Строение протопласта

o 3.2Клеточная оболочка и поверхностные структуры

o 3.3Размеры

o 3.4Многоклеточность у бактерий

· 4Способы передвижения и раздражимость

· 5Метаболизм

o 5.1Конструктивный метаболизм

o 5.2Энергетический метаболизм

o 5.3Типы жизни

· 6Размножение и устройство генетического аппарата

o 6.1Размножение бактерий

o 6.2Генетический аппарат

o 6.3Горизонтальный перенос генов

· 7Клеточная дифференциация

o 7.1Образование покоящихся форм

o 7.2Другие типы морфологически дифференцированных клеток

· 8Классификация

· 9Происхождение, эволюция, место в развитии жизни на Земле

· 10Экология

o 10.1Экологические и биосферные функции

o 10.2Патогенные бактерии

o 10.3Бактерии в мутуалистических отношениях с другими организмами

o 10.4Бактерии и человек

o 10.5Бактерии в повседневной жизни

· 11См. также

· 12Примечания

· 13Литература

· 14Ссылки

Термин [ править | править код ]

До конца 1970-х годов термин «бактерия» был синонимом прокариотов, но в 1977 году на основании данных молекулярной биологии прокариоты были разделены на домены архебактерий и эубактерий. Впоследствии, чтобы подчеркнуть различия между ними, они были переименованы в архей и бактерий соответственно. Хотя до сих пор под бактериями часто понимают всех прокариотов, в данной статье описаны лишь эубактерии. Однако, эти две группы схожи, и многие положения статьи справедливы также для архей — в подобных случаях используется термин «прокариоты» или сочетание «бактерии и археи».

В экологических и микробиоценотических исследованиях под бактериями часто понимают лишь нефотосинтезирующие немицелиальные прокариоты, противопоставляя их по функциям актиномицетам и цианобактериям.

История изучения [ править | править код ]

Микроскоп 1751 года

Впервые бактерии увидел в оптический микроскоп и описал в 1676 году голландский натуралистАнтони ван Левенгук. Как и всех микроскопических существ, он назвал их «анималькули».

Название «бактерии» ввёл в употребление в 1828 году Христиан Эренберг.

В 1850-х годах Луи Пастер положил начало изучению физиологии и метаболизма бактерий, а также открыл их болезнетворные свойства.

Дальнейшее развитие медицинская микробиология получила в трудах Роберта Коха, которым были сформулированы общие принципы определения возбудителя болезни (постулаты Коха). В 1905 году он был удостоен Нобелевской премии за исследования туберкулёза.

Основы общей микробиологии и изучения роли бактерий в природе заложили Бейеринк Мартинус Виллем и Виноградский Сергей Николаевич.

Изучение строения бактериальной клетки началось с изобретением электронного микроскопа в 1930-е годы. В 1937 году Э. Чаттон предложил делить все организмы по типу клеточного строения на прокариот и эукариот, и в 1961 году Стейниер и Ван Ниль окончательно оформили это разделение. Развитие молекулярной биологии привело к открытию в 1977 году К. Вёзе коренных различий и среди самих прокариот: между бактериями и археями.

Строение [ править | править код ]

Схема строения грамположительной бактерии: A — пили, B — рибосомы, C — капсула, D — слой пептидогликана, E — жгутик, F — цитозоль, G — запасные вещества, H — плазмида, I — нуклеоид, J — цитоплазматическая мембрана

Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны. По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже — звёздчатыми, тетраэдрическими, кубическими, C- или O-образными. Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы, то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

Из обязательных клеточных структур выделяют три:

· нуклеоид,

· рибосомы,

· цитоплазматическая мембрана (ЦПМ).

С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки). ЦПМ и цитоплазму объединяют вместе в понятие протопласт.

Строение протопласта[править | править код]

ЦПМ ограничивает содержимое клетки (цитоплазму) от внешней среды. Гомогенная фракция цитоплазмы, содержащая набор растворимых РНК, белков, продуктов и субстратов метаболических реакций, названа цитозолем. Другая часть цитоплазмы представлена различными структурными элементами.

Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, строго говоря, отсутствие вообще внутрицитоплазматических мембран, не являющихся производными ЦПМ. Однако у разных групп прокариот (особенно часто у грамположительных бактерий) имеются локальные впячивания ЦПМ, выполняющие в клетке разнообразные функции и разделяющие её на функционально различные части. У многих фотосинтезирующих бактерий существует развитая сеть производных от ЦПМ фотосинтетических мембран. У пурпурных бактерий они сохранили связь с ЦПМ, легко обнаруживаемую на срезах под электронным микроскопом, у цианобактерий эта связь либо трудно обнаруживается, либо утрачена в процессе эволюции. В зависимости от условий и возраста культуры фотосинтетические мембраны образуют различные структуры — везикулы, хроматофоры, тилакоиды.

Вся необходимая для жизнедеятельности бактерий генетическая информация содержится в одной ДНК(бактериальная хромосома), чаще всего имеющей форму ковалентно замкнутого кольца (линейные хромосомы обнаружены у Streptomyces и Borrelia). Она в одной точке прикреплена к ЦПМ и помещается в структуре, обособленной, но не отделённой мембраной от цитоплазмы, и называемой нуклеоид. ДНК в развёрнутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, то есть практически все прокариоты гаплоидны, хотя в определённых условиях одна клетка может содержать несколько копий своей хромосомы, а Burkholderia cepacia имеет три разных кольцевых хромосомы (длиной 3,6; 3,2 и 1,1 млн пар нуклеотидов). Рибосомы прокариот также отличны от таковых у эукариот и имеют константу седиментации 70 S (80 S у эукариот).

Помимо этих структур, в цитоплазме также могут находиться включения запасных веществ.

Клеточная оболочка и поверхностные структуры[править | править код]

Клеточная стенка — важный структурный элемент бактериальной клетки, однако необязательный. Искусственным путём были получены формы с частично или полностью отсутствующей клеточной стенкой (L-формы), которые могли существовать в благоприятных условиях, однако иногда утрачивали способность к делению. Известна также группа природных не содержащих клеточной стенки бактерий — микоплазм.

У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам.

Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20—80 нм, построенный в основном из пептидогликана с меньшим количеством тейхоевых кислот и небольшим количеством полисахаридов, белков и липидов (так называемый липополисахарид). В клеточной стенке имеются поры диаметром 1—6 нм, которые делают её проницаемой для ряда молекул.

У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2—3 нм. Он окружён наружной мембраной, имеющей, как правило, неровную, искривлённую форму. Между ЦПМ, слоем пептидогликана и внешней мембраной имеется пространство, называемое периплазматическим и заполненное раствором, включающим в себя транспортные белки и ферменты.

С внешней стороны от клеточной стенки может находиться капсула — аморфный слой, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру. Однако между этими тремя идеализированными случаями есть множество переходных форм.

Бактериальных жгутиков может быть от 0 до 1000. Возможны как варианты расположения одного жгутика у одного полюса (монополярный монотрих), пучка жгутиков у одного (монополярный перитрих или лофотрихиальное жгутикование) или двух полюсов (биполярный перитрих или амфитрихиальное жгутикование), так и многочисленные жгутики по всей поверхности клетки (перитрих). Толщина жгутика составляет 10—20 нм, длина — 3—15 мкм. Его вращение осуществляется против часовой стрелки с частотой 40—60 об/с.

Помимо жгутиков, среди поверхностных структур бактерий необходимо назвать ворсинки. Они тоньше жгутиков (диаметр 5—10 нм, длина до 2 мкм) и необходимы для прикрепления бактерии к субстрату, принимают участие в транспорте метаболитов, а особые ворсинки — F-пили, нитевидные образования, более тонкие и короткие (3—10 нм × 0,3—10 мкм), чем жгутики, — необходимы клетке-донору для передачи реципиенту ДНК при конъюгации.

Размеры[править | править код]

Шкала относительных размеров эукариот, прокариот, вирусов, протеинов, молекул и атомов.

Bacillus subtilis после окрашивания по Граму. Серые овальные структуры — эндоспоры

Размеры бактерий в среднем составляют 0,5—5 мкм. Масса — 4·10−13 г[1]. Escherichia coli, например, имеет размеры 0,3—1 на 1—6 мкм, Staphylococcus aureus — диаметр 0,5—1 мкм, Bacillus subtilis — 0,75 на 2—3 мкм. Крупнейшей из известных бактерий является Thiomargarita namibiensis, достигающая размера в 750 мкм (0,75 мм). Второй является Epulopiscium fishelsoni, имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus. Achromatium oxaliferum достигает размеров 33 на 100 мкм, Beggiatoa alba — 10 на 50 мкм. Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм. В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1—0,25 мкм, что соответствует размеру крупных вирусов, например, табачной мозаики, коровьей оспы или гриппа. По теоретическим подсчётам, сферическая клетка диаметром менее 0,15—0,20 мкмстановится неспособной к самостоятельному воспроизведению, поскольку в ней физически не могут поместиться все необходимые биополимеры и структуры в достаточном количестве.

Staphylococcus aureus в том же увеличении

При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём — пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой. Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных. Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.

Многоклеточность у бактерий[править | править код]

Многоклеточная нитчатая цианобактерия Anabaena flosaquae

Одноклеточные формы способны осуществлять все функции, присущие организму, независимо от соседних клеток. Многие одноклеточные прокариоты склонны к образованию клеточных агрегатов, часто скреплённых выделяемой ими слизью, эти агрегаты получили название биоплёнки. Чаще всего это лишь случайное объединение отдельных организмов, но в ряде случаев временное объединение связано с осуществлением определённой функции, например, формирование плодовых тел миксобактериями делает возможным развитие цист, при том, что единичные клетки не способны их образовывать. Подобные явления наряду с образованием одноклеточными эубактериями морфологически и функционально дифференцированных клеток — необходимые предпосылки для возникновения у них истинной многоклеточности.

Многоклеточный организм должен отвечать следующим условиям:

· его клетки должны быть агрегированы,

· между клетками должно осуществляться разделение функций,

· между агрегированными клетками должны устанавливаться устойчивые специфические контакты.

Многоклеточность у прокариот известна, наиболее высокоорганизованные многоклеточные организмы принадлежат к группам цианобактерий и актиномицетов. У нитчатых цианобактерий описаны структуры в клеточной стенке, обеспечивающие контакт двух соседних клеток — микроплазмодесмы. Показана возможность обмена между клетками веществом (красителем) и энергией (электрической составляющей трансмембранного потенциала). Некоторые из нитчатых цианобактерий содержат помимо обычных вегетативных клеток функционально дифференцированные: акинеты и гетероцисты. Последние осуществляют фиксацию азота и интенсивно обмениваются метаболитами с вегетативными клетками.

Способы передвижения и раздражимость [ править | править код ]

Движение живых неокрашенных бактерий под микроскопом, ув. 600x, фазовый контраст

Многие бактерии подвижны. Имеется несколько принципиально различных типов движения бактерий. Наиболее распространено движение при помощи жгутиков: одиночных бактерий и бактериальных ассоциаций (роение). Частным случаем этого также является движение спирохет, которые извиваются благодаря аксиальным нитям, близким по строению к жгутикам, но расположенным в периплазме. Другим типом движения является скольжение бактерий, не имеющих жгутиков, по поверхности твёрдых сред и движение в воде безжгутиковых бактерий рода Synechococcus [2]. Его механизм пока недостаточно изучен; предполагается участие в нём выделения слизи (проталкивание клетки) и находящихся в клеточной стенке фибриллярных нитей, вызывающих «бегущую волну» по поверхности клетки. Наконец, бактерии могут всплывать и погружаться в жидкости, меняя свою плотность, наполняя газами или опустошая аэросомы.

Бактерии активно передвигаются в направлении, определяемом теми или иными раздражителями. Это явление получило название таксис. Различают хемотаксис, аэротаксис, фототаксис и др.

Метаболизм [ править | править код ]

Конструктивный метаболизм[править | править код]

За исключением некоторых специфических моментов биохимические пути, по которым осуществляется синтез белков, жиров, углеводов и нуклеотидов, у бактерий схожи с таковыми у других организмов. Однако по числу возможных вариантов этих путей и, соответственно, по степени зависимости от поступления органических веществ извне они различаются.

Часть из них может синтезировать все необходимые им органические молекулы из неорганических соединений(автотрофы), другие же требуют готовых органических соединений, которые они способны лишь трансформировать (гетеротрофы).

Наибольшей степенью гетеротрофности отличаются внутриклеточные паразиты. Если при этом они способны существовать на богатых искусственных средах, они называются факультативными (факультативными иногда также называют паразитов, способных проделывать весь свой жизненный цикл во внешней среде, без участия хозяина). Некоторые облигатные (обязательные) внутриклеточные паразиты утратили часть путей биосинтеза и получают многие органические вещества, вплоть до АТФ, из клеток хозяина. Велика степень зависимости от хозяев также многих бактерий-эндосимбионтов. Большинство бактерий принадлежит к сапрофитам: они не питаются непосредственно веществами других организмов, но используют синтезированные ими органические вещества после их смерти. Существует также ряд бактерий, требующих наличия в среде небольшого круга определённых органических веществ (аминокислот, витаминов), которых они не могут синтезировать самостоятельно и, наконец, гетеротрофы, которые нуждаются лишь в одном довольно низкомолекулярном источнике углерода (сахар, спирт, кислота). Некоторые из них отличаются высокой специализацией (Bacillus fastidiosus может использовать только мочевую кислоту), другие в качестве единственного источника углерода и энергии могут использовать сотни различных соединений (многие Pseudomonas).

Удовлетворять потребности в азоте бактерии могут как за счёт его органических соединений (подобно гетеротрофным эукариотам), так и за счёт молекулярного азота (как и некоторые археи). Большинство бактерий используют для синтеза аминокислот и других азотсодержащих органических веществ неорганические соединения азота: аммиак(поступающий в клетки в виде ионов аммония), нитриты и нитраты (которые предварительно восстанавливаются до ионов аммония). Фосфор они способны усваивать в виде фосфата, серу — в виде сульфата или реже сульфида.

Энергетический метаболизм[править | править код]

Способы же получения энергии у бактерий отличаются своеобразием. Существует три вида получения энергии (и все три известны у бактерий): брожение, дыхание и фотосинтез.

Брожение — серия окислительно-восстановительных реакций, в ходе которых образуются нестабильные молекулы, с которых остаток фосфорной кислоты переносится на АДФ с образованием АТФ (субстратное фосфорилирование). При этом возможно внутримолекулярное окисление и восстановление.

Дыхание — окисление восстановленных соединений с переносом электрона через локализованную в мембране дыхательную электронтранспортную цепь, создающую трансмембранный градиент протонов, при использовании которого синтезируется АТФ (окислительное фосфорилирование). В то время как эукариоты в конечном итоге почти всегда «сбрасывают» электрон на кислород (лишь в редких случаях акцептором электронов могут служить нитраты), бактерии могут использовать вместо него окисленные органические и минеральные соединения (фумарат, углекислый газ, сульфат-анион, нитрат-анион и др.; см. анаэробное дыхание), а вместо окисляемого органического субстрата использовать минеральный (водород, аммиак, сероводород и др.), что часто бывает сопряжено с автотрофной фиксацией CO2 (см. хемосинтез).

Фотосинтез бактерий может быть двух типов — бескислородный, с использованием бактериохлорофилла (зелёные, пурпурные и гелиобактерии) и кислородный с использованием хлорофилла (цианобактерии (хлорофилл a), прохлорофиты (a и b)). Цианобактерии, глаукоцистофитовые, красные и криптофитовые водоросли — единственные фотосинтезирующие организмы, содержащие фикобилипротеины. У архей встречается бесхлорофилльный фотосинтез с участием бактериородопсина (правда, энергия света используется при этом не для фиксации CO2, а непосредственно для синтеза АТФ, так что в строгом смысле это не фотосинтез, а фотофосфорилирование).

Бактерии, осуществляющие только бескислородный фотосинтез, не имеют фотосистемы II. Во-первых, это пурпурные и зелёные нитчатые бактерии, у которых функционирует только циклический путь переноса электронов, направленный на создание трансмембранного протонного градиента, за счёт которого синтезируется АТФ (фотофосфорилирование), а также восстанавливается НАД(Ф)+, использующийся для ассимиляции CO2. Во-вторых, это зелёные серные и гелиобактерии, имеющие и циклический, и нециклический транспорт электронов, что делает возможным прямое восстановление НАД(Ф)+. В качестве донора электрона, заполняющего «вакансию» в молекуле пигмента в бескислородном фотосинтезе используются восстановленные соединения серы (молекулярная, сероводород, сульфит) или молекулярный водород.

Существуют также бактерии с весьма специфическим энергетическим метаболизмом. Так, в октябре 2008 года в журнале Science появилось сообщение[3] об обнаружении экосистемы, состоящей из представителей одного единственного ранее неизвестного вида бактерии — Desulforudis audaxviator, которые получают энергию для своей жизнедеятельности из химических реакций с участием водорода, образующегося в результате распада молекул воды под воздействием радиации залегающих вблизи нахождения колонии бактерий урановых руд[4]. Некоторые колонии бактерий, обитающие на дне океана, используют для передачи энергии своим собратьям электрический ток[5][6].

Типы жизни[править | править код]

Объединить типы конструктивного и энергетического метаболизма можно в следующей таблице:


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.053 с.