Тепловое движение. Температура. Внутренняя энергия. Способы изменения внутренней энергии. — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Тепловое движение. Температура. Внутренняя энергия. Способы изменения внутренней энергии.

2019-11-19 396
Тепловое движение. Температура. Внутренняя энергия. Способы изменения внутренней энергии. 0.00 из 5.00 0 оценок
Заказать работу

Тепловое движение. Температура. Внутренняя энергия. Способы изменения внутренней энергии.

 

Вы знаете, что все состоят из мельчайших частиц — атомов и молекул, между которыми существуют промежутки. Большое количество разнообразных наблюдаемых явлений подтверждают дискретность веществ: явление диффузии — самопроизвольное проникновение одного вещества в другое.

               

Самым убедительным доказательством дискретного строения вещества является броуновское движение.

 

Броуновское движение — это беспорядочное движение малых частиц вещества, взвешенных в жидкости или газе.

Взвешенными называются частицы, плотность вещества которых сравнима с плотностью среды, в которой они находятся. При этом размеры этих частиц в тысячу с лишним раз превышают размеры молекул.

Впервые такое движение наблюдал английский ботаник Р. Броун в 1827 г. Он рассматривал движение частиц цветочной пыльцы в воде под микроскопом. Каждая частица пыльцы совершала причудливое зигзагообразное движение. Постепенно становилось понятным, что мельчайшие частички вещества испытывают со всех сторон удары ещё более мелких частиц, которые в микроскоп уже не видны. Открытое Р. Броуном движение неоспоримо доказало факт того, что все вещества состоят из атомов и молекул. И самое главное, что эти мельчайшие частицы вещества находятся в непрерывном беспорядочном движении, интенсивность которого зависит от температуры вещества. Чем выше температура, тем быстрее двигаются молекулы вещества, и наоборот.

А что такое температура?

Многие из вас наверняка приведут примеры того, что температура горячей воды больше чем холодной. А кто-то скажет, что температура на улице зимой ниже, чем летом.

 

Количество теплоты. Единицы количества теплоты. Удельная теплоемкость.

 

Нам с вами уже известно любое тело обладает внутренней энергией, которая представляет собой сумму кинетической энергии теплового движения частиц тела, и потенциальной энергии их взаимодействия друг с другом.

А изменить внутреннюю энергию тела можно двумя способами — это путём совершения механической работы и теплопередачей.

Мы знаем, что мерой изменения внутренней энергии при совершении работы является величина этой работы. Тогда возникает логичный вопрос: а с помощью какой величины можно охарактеризовать изменение внутренней энергии тела при теплопередаче?

Такой величиной является количество теплоты.

Различные вещества при горении выделяют разное количество теплоты.

Поэтому энергию, выделяющуюся при сгорании различного вида топлива, принято характеризовать величиной, называемой удельной теплотой сгорания топлива.

Физическая величина, численно равная количеству теплоты, которое необходимо передать твёрдому телу массой 1 кг при температуре плавления для перехода в жидкость, называется удельной теплотой плавления.

Обозначается удельная теплота плавления греческой буквой λ (лямбда).

Разные вещества имеют разную удельную теплоту плавления, значение которой определяют экспериментально:

Также различные эксперименты показали, что удельная теплота плавления равна удельной теплоте кристаллизации.

Из таблицы видно, что, например, удельная теплота плавления ртути равна 12 000 Дж/кг. Это значит, что для перехода 1 кг ртути, имеющей температуру –39 оС, из твёрдого состояния в жидкое она должна поглотить 12 000 Дж теплоты. При обратном переходе столько же теплоты выделяет каждый килограмм ртути.

Также из таблицы видно, что лёд имеет сравнительно большую удельную теплоту плавления и кристаллизации. Это и объясняет затяжное таяние снега и льда озёр, рек и других водоёмов, что позволяет избежать больших паводков. А так как теплоту лёд поглощает из окружающей среды, то погода в это время, как правило, прохладная. И наоборот, при замерзании озёр, рек и других водоёмов выделяется большое количество энергии, что делает более тёплой позднюю осеннюю погоду.

Очевидно, что если известно количество теплоты, необходимое для плавления 1 кг ртути при температуре плавления, то для плавления 5 кг ртути нужно затратить количество теплоты в 5 раз больше, то есть 60 000 Дж.

Таким образом, чтобы вычислить количество теплоты необходимое для плавления вещества массой m взятого при температуре плавления, следует удельную теплоту плавления этого вещества умножить на его массу:

Q = λm

Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.

Пример решения задачи.

Определите, какое количество теплоты поглощает лёд при 0 оС, если образовалось 5 кг воды?

8.11 Испарение. Насыщенный и ненасыщенный пар. Конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

 

На прошлых уроках мы с вами говорили о том, что существует три агрегатных состояния вещества — твёрдое, жидкое и газообразное.

И выяснили, что при агрегатных превращениях возможны переходы вещества из одного агрегатного состояния в другое.

На этом уроке мы рассмотрим процесс превращения жидкости в газ, и обратное превращение вещества из газообразного состояния в жидкое.

Задумывался ли кто-нибудь из вас над вопросом: почему сохнет мокрая одежда? И почему в ветреную погоду она высыхает значительно быстрее, чем в тихую и прохладную? А если оставить открытым флакон духов, то очень скоро он может оказаться пустым. Почему? Попытаемся ответить на эти и некоторые другие вопросы.

Для начала давайте вспомним, что молекулы вещества в любом его агрегатном состоянии находятся в непрерывном движении. Их скорости меняются самым случайным образом.

Так, например, молекула жидкости, имеющая большую скорость, несомненно обладает и большой кинетической энергией. Такая молекула может преодолеть силы притяжения к другим молекулам и покинуть жидкость. А так как молекулы с большой энергией есть всегда, то со временем количество жидкости будет уменьшаться, а над жидкостью будет образовываться пар.

Явление превращения жидкости в пар называется парообразованием.

Водяной пар невидим. А то, что мы свами часто ошибочно называем паром — например, белёсую струю, выходящую из кипящего чайника, — это не пар, а туман. Он состоит из крошечных капелек воды, образовавшихся при конденсации пара. Но об этом явлении мы поговорим позже.

Отличают два вида парообразования — это испарение и кипение. Они осуществляются при разных условиях.

Испарение — это парообразование, идущее со свободной поверхности жидкости.

А от чего зависит скорость испарения жидкости? Чтобы ответить на этот вопрос, давайте с вами проведём следующий опыт. На стекло нанесём тампоном влажные пятна одинаковых размеров в такой последовательности: подсолнечное масло, вода, ацетон. И проследим, какая жидкость испарится первой.

Через некоторое время мы заметим, что первым исчезнет пятно ацетона, затем воды, и позже всех — подсолнечного масла. Следовательно, скорость испарения зависит от рода жидкости. Это и понятно, ведь у разных жидкостей силы взаимодействия молекул неодинаковые.

Продолжим опыт. Одну стеклянную пластинку возьмём холодную, а другую нагреем. И нанесём на них две одинаковые капли воды.

С нагретого стекла капля исчезнет быстрее, чем с холодного.

И это неудивительно, поскольку чем выше температура жидкости, тем больше скорость движения её молекул, и, соответственно, их кинетическая энергия. Следовательно, большее число молекул способно преодолеть силы притяжения и выйти за пределы поверхности жидкости.

Пример решения задач.

Задача 1. Определите, какое количество теплоты необходимо затратить, чтобы двести грамм воды, находящейся при температуре двадцать градусов Цельсия, полностью превратить в пар при ста градусах?

8.13 Влажность воздуха. Способы определения влажности воздуха.

 

На прошлых уроках мы изучали процесс испарения. Давайте вспомним, что испарением, называется процесс парообразования, происходящий со свободной поверхности жидкости.

Поскольку этот процесс происходит непрерывно на нашей планете, то в атмосфере всегда присутствуют водяные пары.

Вы только представьте: на Земле за год испаряется около 4,25 ∙ 1014 т воды. Содержание водяного пара в атмосфере характеризует понятие влажность. В метеорологических сводках нам часто сообщают о влажности воздуха, например: «...относительная влажность воздуха 84%. О чём же это говорит?

Под влажностью воздуха понимается выраженное в процентах содержание водяных паров в воздухе.

Для количественной характеристики содержания водяного пара в воздухе используется абсолютная и относительная влажность.

Абсолютной влажностью воздуха (ρ) называют массу водяного пара, содержащегося в одном кубометре воздуха, или плотность водяного пара, содержащегося в воздухе.

Например, если говорят, что влажность воздуха равна 7 г/м3, то это значит, что в 1 м3 воздуха содержится водяной пар массой 7 г.

Однако зная абсолютную влажность воздуха, нельзя сказать, сухой это воздух или влажный. Для того чтобы судить о степени влажности воздуха, вводят величину, называемую относительной влажностью.

Относительной влажностью воздуха называют величину, равную отношению плотности водяного пара, содержащегося в воздухе, (то есть абсолютной влажности) к плотности насыщенного водяного пара при этой температуре:

Значения плотности насыщенного водяного пара при разной температуре приведены в таблице:

 

Чтобы узнать, как ей пользоваться, рассчитаем относительную влажность воздуха, если абсолютная влажность воздуха при температуре 10 оС равна 5,6 г/м3.

Для этого по таблице найдём плотность насыщенного пара при этой температуре.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы.

Если количество водяного пара в воздухе больше, чем в насыщенном паре при данной температуре, то говорят, что воздух пересыщен водяными парами.

Пересыщенное состояние воздуха является неустойчивым, поскольку в нем не может содержаться такое количество воды. Следовательно, при малейшей возможности избыток воды сконденсируется. Этот процесс лежит в основе образования тумана, облаков и дождя. Для начала конденсации необходимы любые твёрдые частицы или капельки жидкости, которые могут служить зародышами для последующего выделения на них воды.

В природе пересыщенное состояние обычно не наблюдается ввиду наличия в атмосфере большого количества различных пылинок, частичек сажи и тому подобного, которые и служат центрами конденсации.

Однако на больших высотах в атмосфере, где мало центров конденсации, это состояние пара может реализовываться. Вследствие этого за летящим самолётом образуется хорошо видимый след, вызванный конденсацией пересыщенного пара на частичках сгоревшего топлива.

Для определения влажности воздуха и точки росы используются приборы, называемые, в зависимости от принципа действия, гигрометрами (от греческого влажный) или психрометрами (от греческого холодный).

       Гигрометры Психрометры

Считается, что первый гигрометр был создан в одна тысяча семьсот восемьдесят третьем году швейцарским геологом Орасом де Соссюром. Его действие было основано на свойстве обезжиренного человеческого волоса изменять свою длину при изменении влажности. Поэтому такой гигрометр принято называть волосяным. В нём один конец волоса прикреплён к раме, а другой конец обёрнут вокруг ролика и соединён с грузом. Груз держит волос в натянутом состоянии. При изменении длины волоса ролик начинает вращаться и приводит в движение стрелку. Шкала такого гигрометра проградуирована так, что по положению стрелки можно определить относительную влажность воздуха.

Первый психрометр был создан в одна тысяча восемьсот двадцать восьмом году немецким физиком Эрнстом Августом. Психрометр служит для определения относительной влажности воздуха и его температуры.

Он состоит из двух одинаковых термометров, один из которых сухой, а другой — влажный. Чем ниже влажность воздуха, тем интенсивнее происходит испарение с поверхности влажного термометра, вследствие чего его температура понижается. Разность показаний термометров служит мерой относительной влажности, которая определяется по специальным психрометрическим таблицам:

Вблизи земной поверхности относительная влажность воздуха колеблется от ста процентов во влажных тропических лесах, до двух стотысячных процента в Антарктиде.

Наиболее комфортно люди чувствуют себя при влажности в 40% — 50%. Если влажность воздуха ниже 40%, то он считает сухим. Нормальным — при влажности от 60% до 80%. И влажным, если его относительная влажность превышает 80%. При высокой влажности в жаркий день испарение влаги с поверхности кожи уменьшается. При низкой влажности, напротив, вследствие испарения сохнет кожа и обезвоживаются слизистые оболочки человека. Вследствие чего повышается вероятность простудных заболеваний.

Контроль влажности воздуха важен для сохранности произведений искусства. В теплицах и оранжереях — для поддержания нужного режима растениям. Также контроль влажности важен при проектировании сооружений, машин и различных механизмов.

Пример решения задач

Задача. В 6 м3 воздуха при температуре 30 оС находится 42 г водяного пара. Найдите относительную влажность воздуха.

 

Тепловое движение. Температура. Внутренняя энергия. Способы изменения внутренней энергии.

 

Вы знаете, что все состоят из мельчайших частиц — атомов и молекул, между которыми существуют промежутки. Большое количество разнообразных наблюдаемых явлений подтверждают дискретность веществ: явление диффузии — самопроизвольное проникновение одного вещества в другое.

               

Самым убедительным доказательством дискретного строения вещества является броуновское движение.

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.