II. Административное наказание — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

II. Административное наказание

2019-11-11 375
II. Административное наказание 0.00 из 5.00 0 оценок
Заказать работу

Административное наказание применяется в соответствии с Кодексом Российской Федерации об административных правонарушениях (далее КоАП РФ) от 30 декабря 2010г. №195-ФЗ.

Административным правонарушением признается противоправное, виновное действие (бездействие) физического или юридического лица, за которое настоящим Кодексом или законами субъектов Российской Федерации об административных правонарушениях установлена административная ответственность.

Административной ответственности подлежит должностное лицо в случае совершения им административного правонарушения в связи с неисполнением либо ненадлежащим исполнением своих служебных обязанностей.

 

14. Организация и проведение проверок, оформление результатов. Значение, цели, виды и периодичность проведения проверок.

15. Права государственных инспекторов по пожарному надзору по пресечению нарушений требований пожарной безопасности.

16. Применение мер обеспечения производства по делам об административном правонарушении в области пожарной безопасности

17. Требования к осуществлению мероприятий по контролю за соблюдением требований безопасности пожарной безопасности на объектах надзора.

18. Порядок производства по делам об административных правонарушениях. Основные этапы и требования.

19. Организация единой государственной системы статистического учета пожаров и их последствий.

20. Официальный и ведомственный учет пожаров и их последствий. Организация единой государственной системы статистического учета пожаров и их последствий.

21. Анализ пожаров и их последствий. Разработка мероприятий по устранению причин и условий, способствующих возникновению пожаров.

22. Правовые основы информационно-пропагандистской деятельности и ее значение в обеспечении пожарной безопасности.

23. Правовые основы лицензирования отдельных видов деятельности. Виды деятельности в области пожарной безопасности, подлежащие лицензированию и их состав. Основные лицензионные требования к видам деятельности в области пожарной безопасности.

24.  Нормативное правовое регулирование подтверждения соответствия продукции и услуг в области пожарной безопасности. Основные понятия, цели и принципы подтверждения соответствия. Формы подтверждения соответствия продукции и услуг в области пожарной безопасности на территории Российской Федерации.

25. Взаимодействие органов ГПН с органами государственной власти и органами местного самоуправления в области пожарной безопасности.

26. Правовые основы деятельности добровольных пожарных формирований.

27. Порядок организации работы в органах ГПН с обращениями граждан и организаций по вопросам пожарной безопасности.

28. Порядок проведения проверки и оценки деятельности территориальных органов МЧС России.

29. Организация и проведение контроля за деятельностью по осуществлению ГПН.

30. Условия соответствия объектов защиты требованиям пожарной безопасности. Основные нормативно-правовые акты и нормативные документы, содержащие требования пожарной безопасности.

Учебная дисциплина «Экспертиза пожаров»:

1. Что такое очаг пожара? В чем отличие очага пожара от очага горения? Как и почему возникают на пожаре очаги горения? В каких случаях могут возникнуть множественные первичные очаги пожара?

Очаг пожара, характеристики основных признаков очага пожара на участке его возникновения.

ОЧАГ ПОЖАРА — место первоначального возникновения горения, перешедшего в пожар. Определение места О. п. — одна из основных задач расследования пожара в целях установления причины пожара, необходимости заведения уголовных дел и т. п.

Окончательный вывод о месте О. п. делается по результатам:

осмотра места пожара;

сбора и анализа показаний очевидцев;

целенаправленного отбора вещественных доказательств;

оценки факторов, предшествовавших возникновению пожара, с учетом информации о последовательности боевых действий по тушению пожара, об использованных огнетушащих веществах и т. п.

Признаки очага пожара, образующиеся на участке его возникновения
1. Горение в небольших замкнутых помещениях и в массе материалов.
2. Беспламенное горение от слабых огневых импульсов.
3. Разрушения и следы горения в очаге пожара при благоприятных условиях для горения.
4. Очаг пожара в перегородке.
5. Очаг пожара в перекрытии и покрытии.
6. Возникновение пожара вне оборудования помещений.
7. Возникновение пожара на оборудовании помещений.
8. Возникновение пожара внутри оборудования.
9. Возникновение пожара на производственном или ином специальном оборудовании.

 

2. Как следует искать очаг пожара? Охарактеризуйте основные признаки очага пожара на участке его возникновения. Какие очаговые признаки формирует на пожаре: конвекция? Что такое "очаговый конус"?

10. Признаки очага, образующиеся над местом возникновения пожара.
11. “Очаговый конус”.
12. Случаи, когда признаки очага в месте возникновения пожара не образуются.
К косвенным признакам очага пожара относятся:
отдельные явления, отражающие процессы горения на пожаре;
поведение технических устройств, действовавших на момент возникновения пожара;
признаки реакции людей и животных на факт пожара.

3. Какие признаки очага пожара могут формировать кондукция, лучистый теплообмен? Какое влияние на формирование очаговых признаков могут оказывать сосредоточение пожарной нагрузки, особенности тушения пожара?

4. 1) наличие следов обугливания на уровне пола. Поскольку пожар развивается, стремясь подняться вверх, то обнаружение горения системы на нижнем уровне облегчает определение места возникновения источника загорания. Сквозные прогары пола (если в этом месте до пожара горючих материалов не было) являются одним из характерных признаков очага пожара;

5. 2) cосредоточение наиболее обгоревших и испепеленных предметов и глубоких разрушений конструктивных элементов. Этот признак наиболее характерен для недостаточного газообмена (в небольших замкнутых помещениях), когда горение в очаге пожара, возникшее раньше, чем на прилегающих участках, вызывает небольшие и четко выраженные обугливание и глубину выгорания материалов именно в месте своего возникновения. При длительном тлении горючих материалов, характерном для неблагоприятного газообмена в очаге пожара, возможно образование сквозных прогаров. Признаки, четко выявляющие очаг горения, могут проявляться и в случае возникновения горения в условиях, благоприятных для доступа воздуха, но при действии маломощного источника зажигания (например, зажженная сигарета) и наличия горючих элементов, не способствующих быстрому развитию огня. По мере удаления от очага пожара наблюдаются последовательно затухающие поражения. На поверхности горючих материалов может увеличиваться налет копоти, характерной для снижения температуры продуктов сгорания. Наибольшему повреждению, как правило, подвергается оборудование, имущество и конструктивные элементы со стороны, обращенной к месту (очагу) возникновения пожара;

6. 3) наличие следов значительного теплового воздействия над очагом пожара, что обуславливается активной передачей теплоты поднимающимся вверх нагретым в

 

7. Охарактеризуйте признаки направленности распространения горения по горизонтали и по вертикали. Что такое "верховой пожар"?

Верховой устойчивый пожар является следующей стадией низового, пламя низового пожара поджигает кроны деревьев, при этом сгорает хвоя, листья, мелкие и более крупные ветви.

8. Какие неорганические неметаллические строительные материалы могут быть объектом экспертно-криминалистического исследования после пожара? Как осуществляется визуальная оценка термических поражений и выявление очаговых признаков на изделиях и конструкциях из неорганических неметаллических строительных материалов?

9. Какими процессами и явлениями сопровождается тепловое воздействие пожара на различные металлы и сплавы? Как осуществляется визуальная фиксация деформаций металлоконструкций на месте пожара? В чем проявляется потеря несущей способности металлических конструкций? Что такое величина относительной деформации металлоконструкции?

Тепловое воздействие пожара на различные металлы и сплавы, какими процессами и явлениями они сопровождаются.

Последствия теплового воздействия при пожаре на металлы (сплавы) и конструкции из них можно разделить на 5 основных групп, условно расположив их (исходя из температуры наступления) в следующий ряд:

- деформации;

- образование окислов на поверхности металла;

- структурные изменения, сопровождающиеся изменением физико-химических и механических свойств;

- растворение металла в металле;

- расплавления и проплавления;

- горение металла (сплава).

Результаты протекания этих процессов при осмотре места пожара можно зафиксировать визуально или с помощью инструментальных средств, а полученную таким образом информацию использовать при поисках очага пожара.

Деформации

Заметные деформации у стальных конструкций происходят уже при температуре 300°С. При нагреве до 550-600°С деформации становятся значительными по величине и в 15-20 % случаев могут привести к обрушению конструкции.

Направление деформации металлических элементов

Металлоконструкции и их отдельные элементы деформируются, как правило, в сторону наибольшего нагрева. Это свойство не только металлов, но и большинства других материалов, например, стекла.

Величина деформации

Очевидно, что величина деформации конструкции должна быть пропорциональна температуре и длительности ее нагрева. Поэтому, казалось бы, на месте пожара наиболее "горячей" зоной можно считать ту, в которой металлоконструкция имеет наибольшую деформацию.

Деформация стальной балки перекрытия

Однако не все так просто, и наибольшая деформация происходит не всегда там, где имела место наибольшая температура, наиболее интенсивный и продолжительный нагрев. Она может быть и там, где конструктивный элемент несет более высокую нагрузку или на него действует наибольший изгибающий момент.

Величины деформации однотипных стальных балок перекрытия, см

Чтобы количественно оценить степень деформации, рассчитывают так называемую величину относительной деформации. Это отношение величины прогиба к величине участка конструкции, на которой этот прогиб наблюдается (b/l).

Взаимное расположение деформированных (обрушившихся) конструкций

При осмотре места пожара нужно обращать внимание на взаимное расположение в пространстве деформированных (обрушившихся) конструкций. Иногда это дает полезную для установления очага пожара информацию. В частности, если одна металлоконструкция придавлена сверху другой, это необходимо отметить в протоколе осмотра как факт, позволяющий оценить последовательность обрушения или деформации отдельных конструктивных элементов здания.

"Высота излома " вертикальных несущих конструкций

При осмотре ряда однотипных вертикальных несущих металлоконструкций необходимо сравнивать минимальную высоту, на которой начинается существенная деформация каждой из конструкций. Замечено, что при нагреве в ходе пожара вертикальные несущие металлоконструкции (например, ангаров и других подобных сооружений) как бы "подламываются" на определенной высоте, в результате чего стальная арка, в частности, приобретает вид. Причем высота излома h тем меньше, чем ближе конструкция к очагу пожара. Данное явление вполне объяснимо - чем ближе очаг пожара к конструкции, тем на меньшей высоте она прогревается до критической температуры восходящими конвективными потоками. Таким образом, фиксация высоты излома вертикальных конструкций дает возможность проявить своеобразный "макроконус" - признак направленности распространения горения от очага к периферии.

Значительные по величине локальные деформации

Значительные по величине и четко выраженные локальные деформации металлоконструкций, особенно балок перекрытия и тому подобных элементов - важный очаговый признак, на который обязательно следует обращать внимание и фиксировать в протоколе осмотра (включая фото - и видеосъемку). Они обычно образуются на начальной стадии пожара под воздействием локального нагрева конвективным потоком и тепловым излучением от очага. Должно быть зафиксировано точное место расположения таких деформаций, их величина и направленность.

Образование окислов на поверхности стальных конструкций и изделий

Если поверхность стального изделия обработанная, гладкая, то первый признак теплового воздействия, который можно обнаружить визуально, - так называемые цвета побежалости. Они появляются при нагревании стали до температуры 200-300°С благодаря образованию на ее поверхности микронной толщины пленки окисла. Толщина слоя окисла зависит от температуры нагрева (чем больше температура, тем окисел толще), а за счет интерференции света с изменением толщины пленки меняется ее цвет. Таким образом, цвет пленки окисла (цвет побежалости) зависит от температуры нагрева стали и может использоваться для ее примерного определения при исследовании пожара

Наличие признаков побежалости на стальных изделиях, их локализация должны быть зафиксированы в протоколе осмотра. При поисках очага такая информация оказывается полезной очень редко, но она может понадобиться при установлении причины пожара, связанного с трением, локальным перегревом в технологических установках, двигателях и т.д.

Окалина

Высокотемпературный окисел - окалина - образуется на сталях обыкновенного качества (за время нагрева, характерное для среднего пожара) при температуре от 700 °С и выше. Рост толщины окалины происходит по параболическому закону: чем больше температура и длительность нагрева, тем она толще.

От температуры образования зависит и состав окалины.

Она может состоять из трех слоев различных окислов - вустита (оксида двухвалентного железа FeO), гематита (оксида трехвалентного железа Fе2О3) и магнетита (оксида двух-трехвалентного железа Fе2О3 Чем выше температура, тем больше в окалине вустита и меньше гематита. Вустит имеет черный цвет, а гематит - рыжий. Это обстоятельство позволяет по цвету окалины и ее толщине ориентировочно оценивать температуру нагрева металлоконструкций.

Низкотемпературная окалина (700-750°С), в которой мало вустита, обычно имеет рыжеватый оттенок и достаточно тонкая. Окалина, образовавшаяся при 900-1000°С и более - толстая и черная. Если окисел на поверхности стальной конструкции рыхлый и рыжий - это, скорее всего, не окалина, а обыкновенная ржавчина.

В протоколе осмотра должен быть отражен цвет окалины на различных участках стальных конструкций. Весьма полезно также сбить молотком, зубилом (или путем деформации конструкции, если она достаточно тонкая) куски окалины на различных участках и измерить микрометром ее толщину. Полученные данные занести в протокол осмотра.

Путем анализа окалины инструментальными и химическими методами возможно определение температуры и длительности высокотемпературного нагрева стальных конструкций в ходе пожара.

Возможно, зондирование слоя окалины непосредственно на месте пожара вихретоковым методом

Наличие локальных зон расплавления (проплавления) металла

Полезная информация о температурных режимах в различных зонах пожара может быть получена путем выявления мест расплавления тех или иных металлов, сплавов, а также стекла и некоторых других материалов. Необходимо обращать внимание и фиксировать в протоколе места расплавления алюминия и его сплавов (температура плавления 600-660°С), бронзы (880-1040°С), меди (1083°С), стали (1300-1400°С) и др.

Необходимо, однако, иметь в виду, что так называемые проплавления в металле могут возникнуть и при температуре ниже температуры плавления. Возможно это, как минимум, по двум причинам:

1) локальный нагрев тонкого стального изделия (листа, проволоки и т.п.) приводит к образованию слоя окалины, соизмеримого по толщине с самим изделием. Окалина, не обладая достаточной механической прочностью, может выкрошиться, и на изделии после пожара обнаружится "дырка";

2) растворение металла в металле. Расплавленный в ходе пожара более легкоплавкий металл при попадании на металл более тугоплавкий может привести к "растворению" последнего в расплаве первого металла. Причем происходит это при температуре, значительно ниже температуры плавления "тугоплавкого" металла.

Такой процесс возможен, например, при попадании расплавленного алюминия на медь и ее сплавы. Происходит это за счет образования эвтектического сплава меди с алюминием. Точно такой же способностью растворяться в расплавленном алюминии обладает сталь. Конечным результатом протекания указанных реакций может быть проплавление (отверстие) в тонком стальном листе, в стенке стальной трубы и т.д.

Учитывая, что расплавления и проплавления относительно тугоплавких металлов и сплавов (меди, а тем более стали) происходят на пожаре достаточно редко, сам факт их наличия должен быть зафиксирован, причина образования в каждом конкретном случае должна быть выяснена.

Квалификационным признаком, позволяющим отличить такое отверстие от проплавления, возникшего, например, под действием электрической дуги, является характерный контур проплавления (в форме лужицы, потека) и тоненькая каемка алюминия, обычно сохраняющаяся по периметру отверстия. В неясных случаях фрагмент объекта с проплавлением подлежит изъятию и направлению на лабораторные исследования

10. Какую экспертную информацию дает исследование обугленных остатков древесины и древесных композиционных материалов? Какие признаки выгорания древесных материалов следует в первую очередь отмечать при осмотре места пожара? Как следует правильно измерять глубину обугливания древесины?

Особенности исследования обугленных остатков древесины и древесных композиционных материалов.

Поражения древесины на пожаре возникают в результате ее термического разложения под воздействием внешнего тепла. Результатом термического разложения древесины является ее обугливание. При этом выделяются горючие газообразные продукты термического разложения, которые при достижении определенной концентрации в воздухе способны загораться и обеспечивать пламенное горение над поверхностью древесины. Образовавшийся угольный слой также способен выгорать, частично и полностью.

Первые признаки термического разложения древесины - потемнение ее поверхности - проявляются при температуре выше 110°С. Активное тление древесины, начинается при температуре порядка 300°С; самовоспламенение древесины происходит примерно при 400°С.

Глубина обугливания древесины последовательно возрастает с увеличением температуры и длительности пиролиза. Поэтому измерение глубины обугливания может применяться для фиксации и оценки изменения степени термического поражения по длине и высоте конструкции, определения направленности теплового воздействия или более интенсивного теплового воздействия.

Внешний вид угляВнешний вид угля несет определенную информацию об условиях, в которых он образовался.Уголь легкий, рыхлый, с крупными трещинами образуется обычно при интенсивном пламенном горении.Уголь плотный, тяжелый, иногда с коричневатым оттенком и даже сохранившейся текстурой древесины (рисунком годовых колец) образуется при низкотемпературном пиролизе (тлении), когда процесс обугливания происходит медленно, и летучие выделяются понемногу, уходя через мелкие трещины и не разрыхляя уголь.

Полное выгорание древесины

Проявляется в сквозных прогарах и при выгорании до золы (порошка серого цвета). Этот признак экстремально высоких термических поражений конструкций прекрасно виден невооруженным глазом. Его надо фиксировать в протоколах осмотра места пожара и учитывать в поисках очага пожара. Необходимо установить природу прогара (может быть, это след конвективного теплового потока, может быть, - очаг пожара).

От полностью выгоревшей деревянной конструкции над очагом пожара остается зола (минеральные соли, содержавшиеся в древесине) и металлические детали (гвозди, болты, скобы и т.д.), если таковые присутствовали до пожара. За пределами участка, выгоревшего над очагом, конструкции рушатся, еще полностью не сгорая, вместе с несгораемыми деталями. Таким образом, скопление, например, гвоздей в каком-либо одном месте может иногда служить дополнительным признаком очага пожара.

Инструментальные исследования древесных углей позволяют определять средне временную интегральную температуру и длительность пиролиза древесины в точке отбора пробы угля.

 

Измерение глубины обугливания древесины проводится методом пенетрации (протыкания). Делается это с помощью любого острого металлического предмета, например, шила, гвоздя, спицы. Такой предмет достаточно свободно протыкает уголь, но хуже входит в более плотную древесину. Правда, таким способом сложно измерить толщину слоя угля при минусовых температурах после тушения водой. При плюсовых же температурах или после размораживания угля на локальном участке сделать это не представляет трудности.

Лучше всего измерять глубину обугливания с помощьюколумбуса- штангенциркуля-глубиномера, который имеет выдвижной хвостовик. Дознаватель или инженер ИПЛ обязательно должен иметь такой штангенциркуль - он пригодится не только при измерении глубины обугливания, но и при производстве других измерений.

Схема измеренияглубины обугливания приведена на рис.

Кроме толщины слоя угля hy, в точке измерения следует определить величину потери сечения конструкции hn. А глубина обугливания Н рассчитывается как сумма этих двух величин:

H=hy+hn  

Измеренные на месте пожара величины Н можно и нужно использовать как критерий степени термического поражения древесины в различных зонах пожара.

В отличие от древесины в древесностружечных плитах (ДСП) не наблюдается достаточно четко выраженного различия по плотности между углем и недест-руктированной частью, поэтому измерить глубину обугливания Н довольно сложно. Для ДСП измеряется убыль сечения плиты hnв точке отбора пробы. Убыль сечения плиты за счет выгорания происходит уже с первых минут и последовательно возрастает с увеличением температуры и длительности нагрева.

 

11. В чем состоят особенности поведения термопластичных и термореактивных пластмасс на пожаре? Какую экспертную информацию можно получить при визуальном и инструментальном исследовании обгоревших изделий из пластмасс? Какими инструментальными методами можно выявлять зоны термических поражений полимерных материалов?

.Особенности поведения термопластичных и термореактивных пластмасс на пожаре.

Пластмассы имеют ряд ценных свойств: высокую элект­роизоляционную и химическую стойкость, малую звуко- и теплопроводность, хорошую водо-, морозо- и свето­стойкость. Большинство пластмасс стойко к различным минеральным маслам и бензину. Они в среднем в два раза легче алюминия (удельный вес от 0,9 до 1,8), об­ладают высоким сопротивлением истиранию, хорошо работают в условиях вибрационных нагрузок, имеютвысокую механическую прочность. Пластические массы хорошо обрабатываются и способны легко соединяться с металлами, тканями, древесиной. Коэффициент тре­ния пластмасс зависит от их состава. Пластмассы с асбестовым наполнителем (асботекстолит) являются фрикционными материалами, а пластмассы с наполни­телем в виде хлопчатобумажной ткани (текстолит) или древесного шпона, а также целый ряд чистых смол яв­ляются антифрикционными материалами.

Все эти свойства пластмасс делают их весьма цен­ным конструкционным материалом.

К недостаткам пластмасс можно отнести их малую теплостойкость, которая лежит в пределах 35-250°С и зависит от типа применяемой смолы.

 B зависимости от поведения пластических масс при нагревании они разделяются на два класса: термореак­тивные и термопластичные пластмассы (термопласты).

Термореактивными называются пластмассы, которые под действием температуры и давления претерпевают существенные химические изменения и переходят в не­плавкие и практически нерастворимые продукты, при­чем процесс необратим. Готовые изделия, полученные из термореактивных пластмасс, не требуют охлаждения при извлечении их из прессоформы и не поддаются пов­торному формованию.

Термопластичными называются пластмассы, которые при нагревании становятся пластичными и затвердевают при охлаждении, не претерпевая при этом химичес­ких изменений, причем этот процесс может быть повто­рен неоднократно.

 

12. Какие изменения происходят при нагреве с лакокрасочными покрытиями различной природы и состава? Каковы температурные диапазоны информативности при исследовании различных лакокрасочных покрытий? Какую экспертную информацию можно получить при визуальном осмотре обгоревших окрашенных изделий и материалов?

Лакокрасочное покрытие, образовавшееся после нанесения краски (эмали) и ее высыхания, представляет собой сочетание пленкообразователя и пигмента, наполнителя; растворитель по мере высыхания краски улетучивается. Когда на пожаре покрытие начинает нагреваться, органические его составляющие (в первую очередь это пленкообразователь) подвергаются термической деструкции.

Внешне это проявляется в том, что сначала покрытие темнеет.

Затем при температуре 200-400 °С происходит его обугливание (карбонизация). У наименее термостойких нитроцеллюлозных покрытий этот процесс начинается при 150 С

Образовавшийся при карбонизации пленкообразователя угольный остаток при температуре более 400 °С тоже, однако, не сохраняется, а постепенно выгорает. При подъеме температуры до 500 °С процесс этот практически завершается. [21]

Если пигмент в краске органический, то выгорает и он. Неорганический пигмент или продукт его разложения обычно остается. В лаковом покрытии пигмент и наполнители отсутствуют, поэтому оно выгорает полностью.

Соответственно протекающим процессам, меняется и то главное, что удается оценить при визуальном осмотре обгоревшего лакокрасочного покрытия - цвет покрытия.

Краска начинает постепенно темнеть при температуре 150-200°С. При 300 °С этот процесс происходит гораздо быстрее, чем при 200 °С. При 400 С слой краски интенсивно темнеет, обугливается в течение 10 минут нагрева, а затем, как показывают экспериментальные исследования, краска начинает светлеть, т.к. уголь выгорает. При 500 С процесс карбонизации и выгорания угольного слоя протекает так быстро, что уже через 10 минут нагрева краска имеет белый цвет, неотличимый от исходного (таблица 4.1.)

 

13. На основании какой информации формируется предварительный вывод об очаге пожара? Охарактеризуйте температурные интервалы информативности инструментальных методов исследования различных конструкционных материалов, составляющих пожарную нагрузку. Опишите косвенные признаки очага пожара.

Очаг пожара, характеристики основных признаков очага пожара на участке его возникновения.

ОЧАГ ПОЖАРА — место первоначального возникновения горения, перешедшего в пожар. Определение места О. п. — одна из основных задач расследования пожара в целях установления причины пожара, необходимости заведения уголовных дел и т. п.

Окончательный вывод о месте О. п. делается по результатам:

осмотра места пожара;

сбора и анализа показаний очевидцев;

целенаправленного отбора вещественных доказательств;

оценки факторов, предшествовавших возникновению пожара, с учетом информации о последовательности боевых действий по тушению пожара, об использованных огнетушащих веществах и т. п.

Признаки очага пожара, образующиеся на участке его возникновения
1. Горение в небольших замкнутых помещениях и в массе материалов.
2. Беспламенное горение от слабых огневых импульсов.
3. Разрушения и следы горения в очаге пожара при благоприятных условиях для горения.
4. Очаг пожара в перегородке.
5. Очаг пожара в перекрытии и покрытии.
6. Возникновение пожара вне оборудования помещений.
7. Возникновение пожара на оборудовании помещений.
8. Возникновение пожара внутри оборудования.
9. Возникновение пожара на производственном или ином специальном оборудовании.
10. Признаки очага, образующиеся над местом возникновения пожара.
11. “Очаговый конус”.
12. Случаи, когда признаки очага в месте возникновения пожара не образуются.
К косвенным признакам очага пожара относятся:
отдельные явления, отражающие процессы горения на пожаре;
поведение технических устройств, действовавших на момент возникновения пожара;
признаки реакции людей и животных на факт пожара

 

Учебная дисциплина «Пожарно-техническая экспертиза»:

1. Что понимается под непосредственной (технической) причиной пожара? Каким путем производится установление причины пожара?

Непосредственная (техническая) причина пожара

Решение вопроса о причине пожара должно заключатся в установлении природы треугольника пожара: источника зажигания, горючего в-ва, окислителя и порядка их взаимодействия. В первую очередь устанавливается источник зажигания, приведший к возникновению горения. Затем выясняется что за горючее в-во имелось в очаге и могло ли оно загореться от данного источника зажигания. И затем объясняется каков по природе и концентрации окислитель (чаще всего это кислород). На основании этих выявленных явлений формируется вывод о причине пожара.

 

2. В каких случаях выдвигается и как отрабатывается версия о причастности к возникновению пожара электротехнических приборов и устройств? Что входит в понятие "электросеть" и как следует ее исследовать при осмотре места пожара? Охарактеризуйте инструментальные методы изучения электропроводов, изъятых с места пожара. Какую экспертную информацию они дают?

Отработка версии о причастности к возникновению пожара электротехнических приборов и устройств.

Причастным к возникновению пожара может быть практически любой электронагревательный прибор - электрокипятильник, утюг, паяльник, чайник, плитка, обогреватель (камин, радиатор, конвектор), жарочный электрошкаф, прибор приготовления пищи с инфракрасным нагревателем и др. Пожар может возникнуть в результате:

- теплового воздействия на окружающие конструкции и предметы;

- загорания веществ и материалов, попавших на конструктивные элементы прибора, нагретые до необходимых для загорания температур;

- работы прибора в нештатных условиях (например, чайника или кипятильника без воды);

- возникновения аварийного пожароопасного режима в электрической части прибора.

В связи с этим изучению и фиксации в протоколе осмотра подлежат место обнаружения электронагревательного прибора или его остатков (фрагментов), вблизи расположенные конструкции и предметы, а сам электронагревательный прибор - изъятию в качестве объекта исследования.

Пожароопасность отдельных видов и марок приборов определяется их конструктивными особенностями и мощностью. Остановимся на некоторых из них.

 

3. Какие аварийные режимы в электросети могут явиться причиной пожара? В чем их различие по причинам возникновения и способу выявления? Перечислите основные признаки, по которым устанавливается наличие различных аварийных режимов.

Аварийные режимы в электросети как причина пожара.

Одними из источников возникновения пожаров являются электрические сети. Опыт эксплуатации электросетей показывает, что аварийные режимы работы электросетей или неудовлетворительное техническое состоянии их создают условия для возникновения пожаров. Основными причинами возникновения пожаров при использовании элетротехники являются:

Короткие замыкания в электросетях, при которых токи достигают очень больших величин,

Перегрузка проводов электросетей токами, превышающими допустимые по нормам значения, причинами которых являются ошибки проектных организаций при выборе сечений проводов или включение во время эксплуатации электросетей дополнительных электроприборов.

Большие переходные сопротивления в местах соединений, ответвлений и оконцеваний проводов, а также в контактах машин (искрение на коллекторах и контактных кольцах) и аппаратов приводят к местному перегреву и воспламенению изоляции проводов или оплавлению корпусов розеток и т.д.

Нарушение изоляции электропроводов, проложенных открыто и подвергаемых атмосферному воздействию (в основном влаги, температуры и солнечной радиации).

 

4. Перечислите виды теплового проявления механической энергии и опишите их пожарную опасность. Как отрабатывается версия о возникновении пожара от трения?

Виды теплового проявления механической энергии. Анализ версий о возникновении пожаров от трения. Механические, тепловые искры, статическое электричество и анализ их причастности к возникновению пожара. Горючие материалы, способные воспламениться от искры.

5. Какие физические факторы могут оказывать влияние на развитие тлеющего горения? Какие материалы проявляют склонность к тлеющему горению? При каких условиях может возникнуть тление горючих жидкостей? По каким признакам устанавливается протекание процесса тлеющего горения? Какие инструментальные методы могут при этом применяться?

6. Перечислите основные виды процессов самовозгорания. В чем сущность теплового самовозгорания веществ и материалов? Перечислите квалификационные признаки, по которым можно выявить протекание этого процесса. Как определяется склонность веществ к самовозгоранию?

Однако существует процесс возгорания ма­териалов без источника зажигания, т.е. само­возгорание, которое может быть следующих ви­дов: тепловое, химическое и микробиологическое.

Тепловое самовозгорание выражается в ак­кумуляции материалом тепла, в процессе кото­рого происходит самонагревание материала. Температура самонагревания вещества или ма­териала является показателем его пожароопас­ное™. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С. Продолжительное тление до начала пламенно-

го горения является отличительной характери­стикой процессов теплового самовозгорания, ко­торые обнаруживаются по длительному и устой­чивому запаху тлеющего материала.

Химическое самовозгорание сразу проявля­ется в пламенном горении, что характерно при соединении органических веществ с кислотами, растительными и техническими маслами. Мас­ла и жиры, в свою очередь, способны к самовоз­горанию в среде кислорода.

На практике чаще всего проявляются комбини­рованные процессы самовозгорания: тепловые и химические

 

7. Охарактеризуйте основные квалификационные признаки поджога.

Основные квалификационные признаки поджога.

Пожарные специалисты выделяют пять групп способов поджога.

Первая - поджоги, совершаемые без специальной подготовки при "обычном для данных условий пожароопасном сосредоточении горючих или легковоспламеняющихся материалов".

Вторая - случаи, когда поджигатель пользуется "вспомогательными горючими материалами и веществами", которые ему удается отыскать на месте или принести с собой.

Третья - так называемые высокотехнологичные поджоги. Речь идет об использовании специальных технических средств или заранее сконструированных зажигательных приспособлений, вызывающих возгорание спустя значительное время после их применения.

Четвертая - когда поджигатель имитирует возни<


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.107 с.