Глава 5. Последняя линия обороны «чистого листа» — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Глава 5. Последняя линия обороны «чистого листа»

2019-10-25 135
Глава 5. Последняя линия обороны «чистого листа» 0.00 из 5.00 0 оценок
Заказать работу

 

Природа человека — это научная тема, и с появлением новых фактов наши представления о ней меняются. Порой факты могут показать, что существующая теория приписывает нашему разуму слишком много врожденных структур. Например, вполне возможно, что наши языковые способности экипированы не готовыми категориями существительных, глаголов, определений и предлогов, а только умением различать в речи слова, похожие на глаголы, и слова, похожие на существительные. А иногда оказывается, что теория приписывает нашему разуму недостаточно врожденных черт. Ведь по-прежнему ни одна из существующих теорий личности не может объяснить, почему оба генетически идентичных близнеца из разлученной пары любят носить резиновые браслеты и притворно чихать в переполненном лифте.

Ждет своего решения и вопрос, как именно разум использует информацию, поступающую от органов чувств. Когда способности к языку и социальному взаимодействию включаются в работу, некоторые виды научения могут представлять собой просто запоминание информации (имени человека или содержания нового законодательного акта) на будущее. Другие могут больше напоминать регулировку шкалы, переключение рычажков или вычисление средних величин, где механизм присутствует, а характеристики не предопределены, так что разум может отслеживать их в конкретной среде. Третьи, возможно, используют стандартную информацию, поступающую от окружающей среды, такую как наличие гравитации или данные о цветах и линиях в зрительном поле для настройки сенсомоторных систем. Существует множество других способов взаимодействия врожденного и приобретенного, и поэтому провести между ними четкую границу сложно.

Эта книга исходит из предположения, что, какой бы ни оказалась точная картина, универсальная сложная природа человека будет ее частью. Я думаю, что у нас есть все основания считать, что разум оснащен набором эмоций, побуждений, способностей к мышлению и коммуникации и что в любой культуре они подчиняются общей логике, их трудно стереть или кардинально изменить, они сформированы естественным отбором на протяжении эволюции человека и обязаны своим базовым дизайном (и некоторыми его вариациями) информации, записанной в геноме. Эта общая картина должна включать все разнообразие теорий, нынешних и будущих, и ряд ожидаемых научных открытий.

Но она не может вместить любую теорию или открытие. Может случиться, ученые узнают, что информации в геноме недостаточно, чтобы определить каждую врожденную структуру, или же найдут неизвестный механизм, с помощью которого информация может записываться в мозге. Или они могут обнаружить, что мозг сделан из самого универсального материала, который может принимать практически любые виды сенсорных сигналов и перестраивать себя для достижения практически любых целей. В первом случае открытия сделали бы врожденную организацию мозга невозможной, в последнем — необязательной. Эти открытия способны поставить под вопрос само понятие человеческой природы. Кроме моральных и политических возражений в отношении природы человека (которые я рассмотрю в последующих главах), могут возникнуть и научные возражения. И если подобные открытия уже на горизонте, стоит присмотреться к ним внимательнее.

Эта глава посвящена трем научным достижениям, которые часто интерпретируют как подрывающие саму возможность существования сложной человеческой природы. Первое — проект «Геном человека». Когда в 2001 году была опубликована расшифрованная последовательность человеческого генома, генетики были удивлены, что генов в нем куда меньше, чем предполагалось. Их количество колеблется в пределах 34 000, что никак не вписывается в ожидавшиеся 50 000–100 0001. Авторы газетных передовиц сделали вывод, что этот факт опровергает любые утверждения о врожденных талантах или склонностях, поскольку на маленькой табличке не уместится большое количество записей. Некоторые даже посчитали это доказательством концепции свободы воли: чем меньше механическая часть, тем больше места для духа.

Второй вызов бросает использование компьютерных моделей нейронных сетей для объяснения когнитивных процессов. Эти искусственные нейронные сети часто достигают больших успехов в выделении статистических свойств обучающего множества. Некоторые разработчики моделей, принадлежащие к школе когнитивистов, называемой коннекционизмом, предполагают, что обычные нейронные сети могут полностью объяснить человеческое познание, практически не нуждаясь в предварительной настройке конкретных способностей, таких как социальное мышление или речь. Во второй главе мы познакомились с основателями коннекционизма Дэвидом Румельхартом и Джеймсом Маклелландом, считавшими, что люди умнее крыс только потому, что их ассоциативная кора больше, и потому, что их среда включает культуру.

Третий вызов исходит от исследований нейропластичности, которые изучают, как развивается мозг в утробе и раннем детстве и как он фиксирует опыт в процессе научения. Нейроученые недавно показали, как меняется мозг в ответ на научение, тренировку и информацию, поступающую от органов чувств. Один из подходов к интерпретации этих открытий можно назвать экстремальной пластичностью. В соответствии с ним кора больших полушарий — извилистое серое вещество, ответственное за восприятие, мышление, речь и память, — белковая субстанция, которая может практически бесконечно изменяться под воздействием окружающей среды и предъявляемых ею требований. «Чистый лист» превращается в пластичный лист.

Коннекционизм и экстремальная пластичность популярны среди когнитивистов Западного полюса, отвергающих «девственно-чистый лист», но желающих свести врожденную организацию к простым настройкам внимания и памяти. Экстремальная пластичность привлекает и нейроученых, желающих повысить значимость своих исследований для образования и социальной политики, и предпринимателей, продающих товары для раннего развития, для излечения неспособных к обучению или для замедления старческой деменции. Вне академических кругов эти три направления поддерживаются некоторыми гуманитариями, желающими отразить атаки биологии2. Бедный геном, коннекционизм и экстремальная пластичность — последняя линия обороны «чистого листа».

Цель этой главы — доказать, что подобные заявления не подтверждение доктрины «чистого листа», а ее продукт. Многие люди (включая и некоторых ученых) читают исследования выборочно, иногда самым странным образом приспосабливая их к своему исходному представлению об отсутствии каких-либо врожденных структур или упрощенным представлениям о том, как эти структуры, если они вообще есть, могут кодироваться генами и развиваться в мозге.

Для начала я бы сказал, что нахожу эти «новейшие и лучшие» теории «чистого листа» совершенно неправдоподобными, и более того — лишенными внутренней логики. Из ничего не родится ничего, и сложность мозга должна откуда-то браться. Она не может происходить только из окружающей среды, потому что сам смысл наличия мозга в том, чтобы достигать определенных целей, а окружающая среда понятия о целях не имеет. Окружающая среда может дать пристанище существам, которые строят дамбы; мигрируют, сверяясь со звездами; щебечут и выводят трели, чтобы произвести впечатление на противоположный пол; метят деревья; пишут сонеты и т. д. Для одного биологического вида фрагмент человеческой речи — сигнал к бегству, для другого — интересный новый звук, который стоит интегрировать в собственный вокальный репертуар, для третьего — материал для грамматического анализа. Информация из внешнего мира не сообщает вам, что с ней делать.

И ткани мозга — это не сказочный джинн, способный подарить своему обладателю любой талант, какой только может пригодиться. Это физический механизм, строение материи, которая определенным образом конвертирует данные на входе в данные на выходе. Одна универсальная субстанция должна быть способна видеть вдаль, контролировать руки, привлекать партнера, растить детей, избегать хищников, обманывать жертву и т. д. Без некоторого уровня специализации это просто невозможно. Говорить, что мозг решает эти задачи благодаря своей «пластичности», ничем не лучше, чем утверждать, что он решает их с помощью магии.

Итак, в этой главе я внимательно рассмотрю недавние научные возражения против концепции человеческой природы. Каждое из открытий важно по-своему, даже если оно и не поддерживает вышеописанных экстравагантных выводов. И когда будет дана оценка последним аргументам в защиту «чистого листа», я смогу должным образом изложить научное обоснование альтернативной теории.

 

* * *

 

Геном человека часто рассматривается как суть нашего вида, так что неудивительно, что, когда в 2001 году его последовательность была опубликована, комментаторы наперебой кинулись интерпретировать его применительно к человеческим делам. Крейг Вентер, чья компания соревновалась с международным консорциумом в гонке секвенирования генома, сказал на пресс-конференции, что меньшее, чем ожидалось, число генов показывает: «У нас просто нет достаточного их количества, чтобы оправдать идею биологического детерминизма. Удивительное разнообразие человеческого вида не запрограммировано в нашем генном коде. Окружающая среда — вот что важно». Британская газета The Gardian озаглавила статью об этом так: «Секрет поведения человека раскрыт: не гены, а окружение — ключ к пониманию наших действий»3. Передовица в другой британской газете заключала, что, «кажется, мы более свободны, чем мы думали». Более того, открытие якобы «поддерживает левых, с их верой в равный потенциал каждого, независимо от происхождения. Но губительно для правых, с их уважением к правящим классам и первородному греху»4.

И все эти выводы сделаны из одной-единственной цифры 34 000! Возникает вопрос: а какое количество генов доказало бы, что разнообразие человеческого вида записано в нашем генетическом коде или что мы менее свободны, чем предполагали, и что правые правы, а левые ошибаются? 50 000? 150 000? С другой стороны, если бы оказалось, что у нас только 20 000 генов, сделало бы это нас еще более свободными, влияние среды еще более важным, а левых политиков еще более влиятельными? Правда в том, что никто на самом деле не знает, что значат эти числа. У нас нет ни малейшего представления о том, сколько генов необходимо, чтобы построить систему жестко запрограммированных модулей, или, напротив, общецелевую обучающуюся программу, или что-нибудь среднее — и уж точно их число ничего не говорит о первородном грехе или превосходстве правящих классов. Пока мы не знаем, как гены строят мозг, их количество в геноме — это только число.

Если вы не верите в это, подумайте о круглом черве Caenorhabditis elegans. У него около 18 000 генов. По логике авторов статей о геноме, червь должен быть в два раза свободнее человека, вдвое превосходить его с точки зрения многообразия и иметь удвоенный потенциал. На самом деле эта микроскопическая нематода состоит из 959 клеток, выращенных по жесткой генетической программе, с нервной системой из 302 нейронов, связанных по заранее установленной схеме. Если говорить о поведении, она ест, размножается, движется в направлении одних запахов, избегая других, — и все. Одно это может подтвердить, что нашей свободой и разнообразием поведения мы обязаны сложности нашей биологической организации, а не ее простоте.

Почему человек, с его сотнями триллионов клеток и сотнями миллиардов нейронов, обходится всего в два раза большим количеством генов, чем скромный маленький червь, — настоящая загадка. Многие биологи думают, что геном человека посчитан не до конца. Число генов в геноме может быть названо только приблизительно. Сейчас их невозможно подсчитать точно. Программы подсчета генов ищут те участки ДНК, что похожи на уже известные гены и достаточно активны для того, чтобы можно было поймать их в момент кодирования белка5. Гены, имеющиеся только у человека, гены, активные только в развивающемся мозге плода, — наиболее важные для человеческой природы, и другие, не привлекающие к себе внимания, могут остаться незамеченными и ускользнуть от подсчета. Сейчас говорят о цифрах в 57 000, 75 000 или даже 120 000 генов6. И тем не менее, даже если у человека не в два, а в шесть раз больше генов, чем у нематоды, загадку это не решит.

Большинство биологов, занимающихся данной проблемой, не считают, что люди менее сложны, чем принято думать. Вместо этого они делают вывод, что число генов в геноме не влияет напрямую на сложность организма7. Единичный ген не связан с единичным компонентом таким образом, что организм с 20 000 генов имеет 20 000 составных частей, а организм с 30 000 генов — 30 000 и т. д. Гены кодируют белки, и некоторые белки строят плоть и кровь организма. Но другие белки занимаются более интересными делами — включают и выключают гены, ускоряют или замедляют их активность, разрезают другие белки и склеивают их в новые комбинации. Джеймс Уотсон говорит, что мы должны пересмотреть свое интуитивное представление о том, что может делать определенное количество генов: «Представьте, что вы смотрите пьесу, в которой играют 30 000 актеров. Есть от чего прийти в замешательство».

В зависимости от взаимодействия генов процесс сборки одного организма может быть гораздо более сложным, чем другого, несмотря на то что генов у них одинаковое количество. В простых организмах гены только строят белок и бросают его в общий котел. У сложных организмов первый ген может включить второй, который усилит активность третьего (но только при условии, что активен четвертый), а он уже выключит первый (если только пятый не активен) и т. д. Это объясняет, каким образом можно построить более сложный организм, пользуясь тем же количеством генов. Поэтому сложность организма зависит не от числа генов, а от количества стрелок в диаграмме, отражающей, как каждый ген влияет на активность других8. И так как добавить один ген значит не просто добавить единственный ингредиент, но умножить количество способов взаимодействия между ними, сложность организма зависит от числа возможных комбинаций активных и неактивных генов в геноме. Генетик Жан-Мишель Клавери предположил, что количество этих комбинаций можно оценить, возведя число 2 (позиции активный/неактивный) в степень, равную количеству генов. По этим оценкам, сложность человеческого генома не в 2, а в 216 000 раз (число с 4800 нулями) превышает сложность генома круглого червя9.

Есть еще две причины, почему число генов в геноме не отражает его сложности. Первая: конкретный ген может продуцировать несколько белков, а не один. Обычно гены рассеяны по ДНК: кодирующие отрезки гена (экзоны) перемежаются некодирующей ДНК (интронами), примерно как статья в журнале прерывается рекламными объявлениями. Сегменты гена, таким образом, могут склеиваться между собой по-разному. Ген, составленный из экзонов А, В, С и D, может кодировать белки АВС, АВD, АСD и т. д. — до десяти различных видов белка на один ген. В сложных организмах такое происходит гораздо чаще, чем в простых10.

Вторая причина состоит в том, что 34 000 генов — это только 3 % человеческого генома. Остальное — ДНК, которая не кодирует белок и которую не учитывают, как «мусор». Но, как сказал недавно один биолог, «термин "мусорная ДНК"» лишь отражение нашего невежества»11. Размер, расположение и содержание некодирующей ДНК могут значительно влиять на активацию соседних с ней генов, кодирующих белки. Информация, записанная в миллиардах некодирующих участков генома — часть характеристики человека, и гораздо большая, чем та, что записана в 34 000 генов.

Итак, человеческий геном абсолютно точно способен построить сложный мозг, невзирая на нелепые заявления о том, как прекрасно, что человек почти так же прост, как круглый червь. Конечно, «удивительное разнообразие человеческого вида не запрограммировано в нашем генетическом коде», но нам не нужно считать гены, чтобы это понять, мы уже знаем это хотя бы из того факта, что ребенок, выросший в Японии, говорит по-японски, и тот же ребенок говорил бы по-английски, если бы вырос в Англии. Вот пример синдрома, который мы будем встречать повсюду в этой книге: научные открытия искажаются до неузнаваемости, чтобы вложить в них нравственный смысл, достичь которого было бы гораздо легче на другой почве.

 

* * *

 

Второе научное направление, обеспечивающее поддержку «чистому листу», — коннекционизм, теория, что мозг подобен искусственным нейронным сетям, смоделированным на компьютерах и обучающимся путем выделения статистических паттернов12.

Когнитивисты согласны, что элементарные процессы, составляющие набор инструкций для мозга — хранение и извлечение ассоциаций, определение последовательности элементов, фокусировка внимания, — встроены в него в виде цепей тесно связанных между собой нейронов (клеток мозга). Вопрос в том, может ли такая сеть самого общего вида, подвергнутая воздействию окружающей среды, объяснить человеческую психологию в целом, или геном создает различные сети для разных областей, таких как язык, зрение, мораль, страх, вожделение, интуитивная психология и т. д. Коннекционисты, разумеется, не верят в «чистый лист», но они верят в его ближайший эквивалент — неспециализированный механизм научения.

Что такое нейросеть? Коннекционисты называют так не реальные нейронные связи в мозгу, а вид компьютерной программы, построенной по аналогии с нейронами и их связями. В самом общем виде «нейроны» передают информацию, будучи более или менее активными. Уровень активности показывает наличие или отсутствие (или интенсивность или степень достоверности) какого-либо простого свойства окружающего мира. Это может быть цвет, линия, расположенная под определенным углом, буква алфавита или свойство животного, например наличие четырех ног.

Сеть нейронов может представлять различные понятия в зависимости от того, какие именно нейроны активны. Если это нейроны для «желтого», «летающего» и «поющего» — сеть думает о канарейке; если для «серебряного», «летающего», «рычащего» — сеть думает о самолете. Искусственные нейронные сети работают так: одни нейроны соединены с другими нейронами связями, имитирующими синапсы. Каждый нейрон считывает входные данные с других нейронов и в ответ меняет собственный уровень активности. Сеть учится, позволяя входным сигналам менять силу нейронных связей. Сила связей определяет вероятность того, будут ли нейроны ввода возбуждать или подавлять нейроны вывода.

В зависимости от того, за что отвечают нейроны, каким образом они связаны изначально и как связи меняются в процессе обучения, коннекционистская сеть может научиться вычислять разные вещи. Если каждый нейрон соединен со всеми прочими, сеть может выделить связи между отдельными свойствами и объединить их в класс объектов. Например, после предъявления описаний множества птиц она может предположить, что поющие объекты с перьями, вероятно, умеют летать, или что летающие объекты, покрытые перьями, поют, или что поющие летающие объекты обычно покрыты перьями. Если слой нейронов ввода связан со слоем нейронов вывода, сеть научится ассоциировать понятия, например: мягкие маленькие летающие объекты — это животные, а большие металлические летающие объекты — транспортные средства. Если слой вывода имеет обратную связь с предыдущими слоями, сеть может штамповать упорядоченные последовательности, например звуки, создающие слово.

Привлекательность нейронных сетей в том, что они автоматически распространяют усвоенные знания на новые похожие объекты. Если сеть научили, что тигры едят глазированные хлопья, она будет склонна к обобщению, что львы тоже едят глазированные хлопья, потому что «поедание глазированных хлопьев» ассоциировано не с «тиграми», а с более простыми характеристиками, вроде «рычания» и «усов», которые относятся и ко львам тоже. Коннекционистская школа, как и школа ассоцианизма Локка, Юма и Милля, доказывает, что в этих обобщениях состоит суть интеллекта. Если это так, то обученная — но в остальном обычная — нейронная сеть может объяснить разум.

Специалисты по компьютерным моделям часто применяют их к упрощенным задачам, чтобы доказать, что они могут работать в принципе. Вопрос тогда ставится так: можно ли масштабировать эти модели для решения более реалистичных задач или, как говорят скептики, исследователи «лезут на дерево, чтобы достать луну»? В этом и состоит проблема коннекционизма. Простые коннекционистские сети могут убедительно демонстрировать память и способность к обобщениям в простых задачах, таких как чтение списка слов или запоминание общих свойств животных. Но им не хватает мощности, чтобы воспроизвести реальные способности человеческого интеллекта, например понять смысл предложения или рассуждать о живых существах.

Люди не просто свободно ассоциируют похожие друг на друга вещи или вещи, которые часто появляются одновременно. Их разумы комбинаторны, они учитывают утверждения, что верно для чего и кто, что, кому, где, когда и зачем сделал. Это требует вычислительной конфигурации гораздо более сложной, чем стандартное переплетение нейронов в неспециализированных коннекционистских сетях. Конфигурации, оборудованной логическим аппаратом: правилами, переменными, утверждениями, состояниями цели и различными видами структур данных, организованных в системы высшего уровня. На эту проблему обращали внимание многие когнитивисты, в том числе Гари Маркус, Марвин Мински, Сеймур Паперт, Джерри Фодор, Зенон Пилишин, Джон Андерсон, Том Бивер и Роберт Хадли. Ее признают и исследователи нейронных сетей, не принадлежащие к коннекционистской школе, например Джон Хаммел, Локендрой Шастри и Пол Смоленски13. Я сам много писал об ограничениях коннекционизма и в своих исследованиях, и в популярной литературе и ниже подвожу итог моих собственных рассуждений14.

В книге «Как работает мозг» (How the Mind Works) в разделе под названием «Коннектоплазма» я описываю некоторые простые логические взаимосвязи и способности, лежащие в основе нашего понимания завершенной мысли (такой, как смысл предложения), которые сложно реализовать с помощью неспециализированных сетей15. Одна из них — различение видовых и индивидуальных свойств, таких как разница между утками вообще и конкретной уткой. Обе имеют общие черты (плавают, крякают, покрыты перьями и т. д.), и обе, таким образом, представлены одним и тем же набором активных элементов стандартной коннекционистской модели. Но люди знают, в чем разница.

Второй человеческий талант — композиционность: способность понимать новые сложные соображения, которые не являются суммой простых мыслей, но зависят от их отношений. Например, мысль, что кошки ловят мышей, нельзя понять, активируя по отдельности каждый элемент: «кошки», «мыши» и «ловить», потому что так мы легко придем к заключению, что это мыши ловят кошек.

Третий логический талант — квантификация, связывание переменных: например, разница между одурачиванием некоторых людей все время или всех людей некоторое время. Без вычислительного эквивалента для иксов и игреков, без понимания утверждений вида «для любого икс» коннекционистская модель не увидит разницы между приведенными высказываниями.

Четвертый — рекурсия: способность встроить одну мысль внутрь другой, так что мы можем понимать не только утверждение, что Элвис жив, но и мысль, что National Enquirer сообщил, что Элвис жив, или что некоторые люди верят сообщению журнала National Enquirer, что Элвис жив, или что это удивительно, но некоторые люди верят сообщению журнала National Enquirer, что Элвис жив, и т. д. Коннекционистские сети будут напластовывать эти утверждения и запутаются в подлежащих и сказуемых.

И последний ускользающий от коннекционистских моделей талант — наша способность оперировать категориями в противовес неопределенным размышлениям. Это помогает нам понять, что Боб Дилан — дедушка, хотя он и не выглядит как типичный дедушка, или что землеройка — не грызун, хотя и очень похожа на мышь. Не имея ничего, кроме супа из нейронов для фиксации свойств объекта, и без запаса правил, переменных и определений сеть оперирует стереотипами и сбивается с толку нетипичными примерами.

В книге «Слова и правила» (Words and Rules) я целенаправленно изучаю единственный феномен языка, который служит проверкой для способности неспециализированных ассоциативных сетей ухватывать самую его суть: составление новых комбинаций из слов или частей слов. Люди не просто запоминают отрывки речи, они создают нечто новое. Простой пример — прошедшее время. Услышав неологизм вроде «спамить» или «гуглить», человек не полезет в словарь, чтобы узнать форму прошедшего времени этих глаголов. Он инстинктивно знает, что правильно — «спамил» и «гуглил». Способность создавать новые комбинации появляется очень рано, в возрасте двух лет, когда англоязычные, например, дети порой неверно образуют прошедшее время, без надобности добавляя окончание — ed к неправильным глаголам, как в «We holded the baby rabbit» и «Horton heared a Who»16.

Очевидный способ объяснить этот талант — обратиться к двум видам вычислительных операций, осуществляемых в уме. Неправильные формы вроде held и heard хранятся в памяти и извлекаются из нее, подобно любому другому слову. Правильные формы, такие как walk-walked, создаются в уме с помощью грамматического правила о добавлении «-ed» к глаголу. Правило применяется, когда память не может помочь, например, когда слово незнакомо и форма его прошедшего времени не хранится в памяти, как в случае с неологизмами, или когда ребенок не может вспомнить неправильную форму, как в случае с «heard», а обозначить прошедшее время необходимо. Присоединение суффикса к глаголу — маленький пример важного человеческого таланта: умения комбинировать слова и фразы, чтобы создавать новые предложения и выражать ими новые мысли. Это одна из свежих идей когнитивной революции, о которых я писал в третьей главе, и один из логических вызовов коннекционизму, перечисленных мной в предшествующей дискуссии.

Коннекционисты использовали прошедшее время как опытный полигон, проверяя, смогут ли они повторить этот хрестоматийный пример человеческой креативности без использования правил и без разделения труда между системой памяти и системой грамматического комбинирования. Серии компьютерных моделей пытались образовывать формы прошедшего времени, используя простые сети сопоставления данных. Эти сети обычно связывают звуки в глаголе со звуками формы прошедшего времени: — am с — ammed, — ing с — ung и т. д. Затем модель может создавать новые формы по аналогии, вроде того как создается обобщение тигров со львами: модель, обученная на слове «crammed», может угадать «spammed», а на слове «folded» — способна сказать «holded».

Но, когда говорят люди, они не просто ассоциируют звуки со звуками, а делают гораздо большее, так что модели не могут за ними угнаться. Ошибки происходят из-за отсутствия механизмов, оперирующих логическими связями. Большинство моделей заходят в тупик, пытаясь справиться с новыми словами, которые не похожи на уже знакомые и не могут быть обобщены по аналогии. Встретившись с новым словом «frilg», например, они выдают не «frilged», как сделал бы человек, а странную смесь вроде «freezled». Дело в том, что у них нет алгоритма переменной (как «х» в алгебре или «глагол» в грамматике), приложимого к любому элементу категории, независимо от того, насколько знакомы его свойства. (Это механизм, позволяющий людям мыслить категориями.) Сети могут только ассоциировать отрывки звуков с другими отрывками, и, сталкиваясь с новым глаголом, который звучит непохоже ни на один из тех, на которых они обучались, сети выдают на-гора попурри из наиболее похожих звуков, какие только могут найти.

Модели также не могут различать глаголы-омонимы с одинаковым звучанием, но разными формами прошедшего времени, как в случае «ring the bell» — «rang the bell» или «ring the city» — «ringed the city». Стандартные модели учитывают только звуки и слепы к грамматической разнице глаголов, требующих различного спряжения. Ключевое отличие здесь между простыми корнями, такими как «ring» в смысле звонить (прошедшее время «rang») и сложными глаголами, произошедшими от существительных, такими как «ring» в смысле окружить (прошедшее время «ringed»). Чтобы уловить эту разницу, лингвистическая система должна быть оборудована структурами связанных данных (например, «глагол, произошедший от существительного»), а не просто кучей разрозненных элементов.

Еще одна проблема — в том, что коннекционистские сети внимательно отслеживают статистику ввода: сколько глаголов каждой звуковой модели они встречали. Это не позволяет им рассчитывать на озарения, с помощью которых маленькие дети открывают правило «-ed» и начинают делать ошибки вроде «heared» и «holded». Создатели коннекционистских сетей могут заставить их так ошибаться, только бомбардируя сети правильными глаголами (чтобы буквально выжечь в них «-ed»), что совершенно не похоже на живой опыт реальных детей. И наконец, масса свидетельств, предоставленных когнитивной нейронаукой, показывает, что грамматические комбинации (включая правильные глаголы) и словарный поиск (включая неправильные глаголы) выполняются отдельными системами мозга, а не единственной ассоциативной сетью.

Не то чтобы нейронные сети были не способны уловить смысл предложения или выполнить задачу грамматического спряжения. (Лучше бы они это умели, потому что сама идея, что размышление — это форма нейронного вычисления, требует, чтобы какой-то вид нейронной сети повторял все, что может делать разум.) Проблема лежит в убежденности, что можно сделать что угодно с самой общей моделью, если правильно ее обучать. Многие исследователи усиливали, модернизировали или объединяли сети в более сложные и мощные системы. Они посвящали разделы нейронной сети абстрактным понятиям вроде «глагольная группа» или «утверждение», встраивали дополнительные механизмы (такие как синхронизированные паттерны импульсов), чтобы связать их в подобие составной рекурсивной системы символов. Они устанавливали пакеты нейронов для слов, или для английских суффиксов, или для основных грамматических признаков. Они строили гибридные системы: с одной нейросетью — для извлечения неправильной формы глагола из памяти и другой — для соединения глагола с суффиксом17.

Система, собранная из усиленных подсетей, может оказаться вне всякой критики. Но в этом случае мы уже не говорим об обычной нейронной сети! Мы будем говорить о сложной системе, в которой изначально заложены механизмы для выполнения задач, подвластных людям. В детской сказке «Каша из топора» главный герой просит разрешения воспользоваться котлом, чтобы сварить кашу из топора. Но затем, чтобы сделать кашу вкуснее, он добавляет все новые и новые ингредиенты и готовит сытное наваристое блюдо за счет скупой хозяйки. Разработчики коннекционистских сетей, претендующие на создание интеллекта на базе обычных нейронных сетей, не требуя чего-то существенного, занимаются тем же самым. Элементы дизайна, которые делают нейросеть умной — за что отвечает каждый нейрон, как они связаны друг с другом, какие типы сетей объединены в систему следующего уровня и каким образом, — отражают врожденную организацию моделируемой части разума. Обычно исследователь подбирает их вручную, подобно изобретателю, перетряхивающему коробку с диодами и транзисторами, но в настоящем мозге они могли развиваться благодаря естественному отбору (и архитектура некоторых сетей действительно создается с помощью симуляции естественного отбора)18. Единственная альтернатива состоит в том, что какие-то предыдущие эпизоды научения подготовили сеть к научению нынешнему, но, разумеется, нам придется в какой-то момент остановиться и признать некоторые врожденные характеристики самой первой сети, запустившей этот процесс.

Так что слухи, что нейронная сеть может заменить ментальную структуру статистическим научением, неверны. Простая, неспециализированная сеть не отвечает требованиям обычного человеческого мышления и речи; комплексные, специализированные сети — это каша из топора, в которой большая часть интересующей нас работы выполняется благодаря изначально заданным, врожденным настройкам нейронных связей внутри сети. Когда мы призна́ем это, моделирование нейронных сетей станет неотъемлемым дополнением теории сложной человеческой природы, а не будет пытаться подменить ее19. Оно заполнит пробелы между элементарными мыслительными операциями и психологической активностью мозга и послужит важным звеном в длинной цепи знаний между биологией и культурой.

 

* * *

 

Бо́льшую часть своей истории нейронауки сталкивались с обескураживающим фактом: мозг выглядит так, словно он изначально специализирован до мельчайшей детали. Если говорить о человеческом теле, то на нем мы видим следы жизненного опыта: оно может быть загорелым или бледным, плотным или рыхлым, иссушенным, пухлым или рельефным. Но подобных следов не найдешь в мозге. Очевидно, что-то здесь не так. Люди учатся, и учатся многому: осваивают язык, культуру, секреты производства, базы данных накопленных ими фактов. К тому же сотни триллионов связей в мозгу невозможно задать геномом в 750 мегабит. Мозг должен каким-то образом меняться в ответ на поступающую информацию, вопрос — каким?

И мы, наконец, начинаем это понимать. Изучение нейропластичности сейчас на пике. Почти каждую неделю появляются новые знания о том, как мозг формируется в утробе и настраивается вне ее. Десятилетиями никто не мог найти хоть что-то, что физически меняется в мозге, и неудивительно, что нынешние открытия в области пластичности нарушили равновесие в дихотомии врожденное/приобретенное. Некоторые считают, что пластичность поможет расширению человеческого потенциала и поставит силу мозга на службу революционным изменениям в воспитании детей, образовании, медицине и борьбе со старением. В некоторых научных манифестах провозглашается, будто пластичность доказывает, что мозг не может иметь сколько-нибудь значительной врожденной структуры20. В книге «Пересматривая наследственность» (Rethinking Innateness) Джеффри Элман и группа коннекционистов Западного полюса пишут, что предрасположенность по-разному думать о разных вещах (язык, люди, объекты и т. д.) может быть заложена в мозг только в виде предупреждающих сигнализаторов, которые обеспечивают организмам получение «огромного количества определенных входных данных еще до последовательного научения»21. В «конструктивистском манифесте» ученые-теоретики Стивен Кварц и Терренс Сейновски пишут, что «хотя кора больших полушарий и не "чистый лист", на ранних стадиях она по большей части не специализирована», и поэтому теории врожденных идей «выглядят неправдоподобными»22.

Бесспорно, исследования пластичности и развития нервной системы открывают человеческому знанию новые горизонты. Как линейная нить ДНК может управлять сборкой замысловатого объемного органа, позволяющего нам думать, чувствовать, учиться? Эта проблема поражает воображение и способна обеспечить нейроученых работой на десятилетия и заодно опровергнуть любые предположения о том, что мы достигли «конца наук».

Да и сами по себе открытия в этих областях удивительны и провокативны. Традиционно считалось, что кора головного мозга (наше «серое вещество») разделена на зоны с определенными функциями. Одни представляют конкретные части тела, другие отвечают за восприятие и обработку звуков и зрительных образов, третьи концентрируются на мышлении и языке. Но теперь мы знаем, что познание и практика меняют границы между зонами. (Это не значит, что ткани мозга буквально увеличиваются или сжимаются, но, как показывает сканирование или обследование коры головного мозга с помощью электродов, граница, на которой заканчивается одна способность и начинается другая, может сдвигаться.) Например, у скрипачей увеличена область коры, отвечающая за пальцы левой руки23. Когда человек или обезьяна выполняют простую задачу вроде различения форм или слежения за точкой в пространстве, нейроученые могут наблюдать, как части коры головного мозга или даже отдельные нейроны выполняют эту р<


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.054 с.