Расчет неразрезного прогона (спаренный многопролетный) — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Расчет неразрезного прогона (спаренный многопролетный)

2019-09-26 576
Расчет неразрезного прогона (спаренный многопролетный) 0.00 из 5.00 0 оценок
Заказать работу

Обычно деревянные прогоны делают из брусьев прямоугольного сечения или из кругляка, отёсанного на два канта. Прогоны могут проектироваться однопролётными и многопролётными. Однопролётные прогоны, перекрывающие независимо каждый пролёт между фермами, применяются для пролетов от 2,5 до 6,5 м и должны иметь высоту в 1/20 — 1/30 пролёта. Однопролётные прогоны просты в монтаже, но имеют два основных недостатка: 1) при пролётах свыше 4 м они требуют значительного расхода древесины и 2) стык прогонов над фермами несколько затрудняет присоединение прогонов к фермам. Поэтому деревянные прогоны чаще проектируют в виде многопролётных шарнирных балок, стыки которых (шарниры) располагают не над фермами, а в пролётах на расстоянии 0,15 — 0,21 L от опор. При расстоянии между фермами в 3,0 — 5,0 м шарниры располагают через пролёт попарно в пролёте на расстоянии 0,15 L от опор.

В таких балках при равномерно распределённой нагрузке изгибающие моменты во всех пролетах как на опорах, так и в пролётах получаются равными и каждый составляет 50% от момента однопролетной балки, что позволяет соответственно уменьшить сечение. Высоту таких пророков делают в 1/20 пролёта.

Принимаем неразрезные прогоны, т.к. они более экономичны по расходу древесины. Расчет спаренного прогона производится по схеме многопролетной неразрезной балки на нормальную составляющую нагрузки. Максимальные изгибающие моменты возникают в прогоне над опорами.

Рис.2 Схема прогона

Рассчитаем многопролетный спаренный дощатый прогон с пролетами, равными шагу балок l=3,4м. Прогоны устанавливаются с шагом 1500 мм на верхние пояса рамы, имеющие уклон i=1:10 (a=4,29 sina=0.099 cosa=0.995).

Снеговая нагрузка для климатического района г. Ижевска принимается равной 2,4 кПа=2400 Н/м2.

Расчетная схема прогона – многопролетная неразрезная балка с равными пролетами l=3,4 м.

Рис. 3 Сбор нагрузок на прогон

№ п.п. Вид нагрузки g(n), кН/м γ(f) g, кН/м
I Постоянная нагрузка      
1 Рубероидная кровля (3 слоя) 1,5 1,3 1,95
2 Фанера 0,24 1,2 0,288
3 Утеплитель ISOVER 0,18 1,2 0,216
4 Обрешетка 0,14 1,1 0,154
  Итого 2,06   2,608
II Временная нагрузка      
1 Снеговая 1,68 0,7 2,4
  Итого 3,74   5,008

Действующие составляющие нагрузки:

;

;

.

Подбор сечения по прочности

Максимальные изгибающие моменты возникают в прогоне над опорами. Изгибающий момент на промежуточных опорах определяется по формуле:

.

Расчетное сопротивление изгибу (сосна 2 сорта):

.

Геометрические характеристики поперечного сечения прогона:

Требуемый момент сопротивления сечения:

.

Задаемся шириной сечения доски:

.

Ширина сечения в средних пролетах, состоящего из двух досок:

.

Требуемая высота сечения:

.

Принимаем сечение:

.

Расчетный момент сопротивления сечения (с учетом острожки):

.

Нормальное напряжение в расчетном сечении прогона:

Первые пролеты прогона усилены третьей доской без расчета

Проверка прогиба прогона в первом пролете

Момент инерции расчетного сечения:

Относительный прогиб:

Условие выполняется – прогиб в пределах нормы.

Расчет стыка прогона на гвоздях

Рис. 4. Стык прогона

Расстояние стыков от опор:

.

Принимаем гвозди диаметром 5 мм, длиной 100 мм

Расстояние от стыка до ближайшего ряда гвоздей:

, где

– толщина сплачиваемого элемента;

— диаметр гвоздя.

Принимаем:

.

Расстояние ближайших гвоздей от опор:

.

Поперечная сила в стыкуемой доске:

Несущая способность гвоздя в несимметричном односрезном соединении при диаметре гвоздя 0,005 м, а=с=0,047 м:

.

Требуемое число гвоздей в конце каждой доски:

Принимаем 6 гвоздей.

Расстояние по вертикали между гвоздями:

.

Расстояние по вертикали от края доски до ближайшего гвоздя:

.

Расчет крепления прогона бобышками

Скатная составляющая опорных реакций:

Так как гвозди принимаем такие же как в стыках

Принимаем 4 гвоздя.

Рабочая площадь бобышки:

Расчет двухшарнирной рамы

Нагрузка от покрытия:

;

;

, где

– вес снегового покрова на 1 м2 горизонтальной поверхности;

– коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие;

.

Определяем собственный вес балки:

;

Полная нагрузка на 1м балки:

;

.

Рис. 5. Схема нагружения рамы. 3.1 Определение геометрических характеристик балки

 

Рис.6 Схема балки

Нагрузки: g=4,98 кН/м, gn=3,72 кН/м.

Материалы: для поясов — сосновые доски сечением 144 ´ 33 мм (после калибровки и фрезерования пиломатериала с сечением 150 ´ 40 мм) с пропилами.

В растянутых поясах используется древесина 2-го сорта, в сжатых — 3-го сорта. Для стенок используется фанера клееная, березовая, марки ФСФ В/ВВ толщиной 12 мм. Доски поясов стыкуются по длине на зубчатый шип, фанерные стенки — «на ус».

Высоту поперечного сечения балки в середине пролета принимаем

h = l /8 = 15/8 = 1,875 м. Высоту опорного сечения,

h 0 = h — 0,5 li = 1,875 — 0,5 × 15 × 0,1 = 1,125 м.

Ширина балки b = Σδд + Σδф = 4 × 3,3 + 2 × 1,2 = 15,6 см.

По длине балки укладывается 13 листов фанеры с расстоянием между осями стыков

l ф — 10δф = 152 — 1,2 × 10 = 140 см.

Расстояние между центрами поясов в опорном сечении.

h ‘ 0 = h 0h н = 1,125 — 0,144 = 0,981 м; 0,5 h ‘ 0 = 0,49 м.

Расчетное сечение располагается на расстоянии x от оси опорной площадки

x = = 15 = 6,45 м,

где γ = h ‘ 0 /(li) = 0,981(15 × 0,1) = 1.47

Вычисляем параметры расчетного сечения: высота балки

h x = h 0 + ix = 1,125 + 0,1 × 6,45 = 1,77 м;

расстояние между центрами поясов

h ‘ x = 1,77 — 0,144 = 1,626 м; 0,5 h ‘ x = 0,813 м;

высота стенки в свету между поясами

hx ст = 1,626 — 0,144 = 1,482 м; 0,5 hx ст = 0,741 м.

Изгибающий момент в расчетном сечении

M x = qx (lx) /2 = 4,98 × 6,45(15 – 6,45)/2 =137,3 кН × м;

требуемый момент сопротивления (приведенный к древесине)

W пр = Mx γ n / R р = 137,3 × 106 × 0,95/9 = 14,5 × 106 мм3;

соответствующий ему момент инерции

I пр = W пр h x /2 = 14,5 × 106 × 1770/2 = 128,32 × 108 мм4.

Задаемся двутавровой коробчатой формой поперечного сечения (см. рис. 7).

Фактические момент инерции и момент сопротивления сечения, приведенные к древесине, равны

I пр = I д + I ф E ф K ф / E д = 2[(132 × 1443/12) + 132 × 144 × 8132] + 2 × 12 × 17703 × 0,9 × 1,2/12 = 371,7 × 108 > 128,32 × 108 мм4;

W пр = I пр × 2/ h x = 2 × 371,7 × 108/1770 = 42 × 106 > 14,5 × 106 мм3,

Здесь K ф = 1,2 — коэффициент, учитывающий повышение модуля упругости фанеры при изгибе в плоскости листа.

Проверяем растягивающие напряжения в фанерной стенке

σфр = MxE ф K ф (W пр E д) = 137,3 × 106 × 0,9 × 1,2\(42× 106) = 3,5 < R фр m ф n = 14 × 0,8/0,95 = 11,8 МПа.

Здесь m ф = 0,8 — коэффициент, учитывающий снижение расчетного сопротивления фанеры, стыкованной «на ус», при работе ее на изгиб в плоскости листа. Принимая раскрепление сжатого пояса прогонами или ребрами плит через 1,5 м, определяем его гибкость из плоскости балки

λ y = l р (0,29 b) = 187\(0,29 × 15,6) = 41,3 < 70 и, следовательно,

φ y = 1 — a (λ /100)2 = 1 — 0,8(4,13/100)2 = 0,99, а напряжения сжатия в поясе

σ с = Mx / W пр = 137,3 × 106 \ 42 × 106 = 3,2 < φ y R с n = 0,91 × 11 × 0,95 = 10,5 МПа.

Проверку фанерных стенок по главным напряжениям производим в зоне первого от опоры стыка на расстоянии x 1 = 0,925 м (см. рис. 7).

Для данного сечения

M = qx 1 (lx 1)/ 2 = 4,98 × 1,150(15 – 1,150)/2 = 39,65 кН × м;

Q = q (l /2 — x 1) = 4,98(15/2 – 1,150) = 31,6 кН;

h = 1,125 + 1,150 × 0,1 = 1,24 м;

h ст = 1,24 — 2 × 0,144 ≈ 0,952 м — высота стенки по внутренним кромкам поясов, откуда 0,5 h ст = 0,47 м.

Момент инерции данного сечения и статический момент на уровне внутренней кромки, приведенные к фанере:

I х1пр = 12403*1,2*2\12+2[156*1443\12+156*144*(952\2)2]*1000\(1,2*900)= 130,4 × 108 мм4;

Sх1 пр = 144*156*470*1000\(1,2*900)+2*1,2*144*470=9,6 × 106 мм3.

Нормальные и касательные напряжения, в фанерной стенке на уровне внутренней кромки растянутого пояса

σст = M × 0,5 h ст / I пр = 39,65 × 106 × 476/130,4 × 108 = 1,4 МПа;

τст = QS пр /(I пр Σδф) = 31,6 × 103 × 9,6 × 106/(130,4 × 108 × 2 × 12) = 0,97 МПа.

Главные растягивающие напряжения по СНиП II-25-80 формула (45)

0,5σст + = 0,5 × 1,4 + = 2,36 < (R рфα / γ n) m ф = (4,7/0,95) 0,8 = 4,1 МПа при угле

α = 0,5 arctg (2τстст) = 0,5 arctg (2 × 0,97/1,4) = 45°

по графику на рис. 17 (СНиП II-25-80, прил. 5).

Для проверки устойчивости фанерной стенки в опорной панели балки вычисляем необходимые геометрические характеристики: длина опорной панели a = 1,125 м (расстояние между ребрами в свету); расстояние расчетного сечения от оси опоры x 2 = 0,952 м; высота фанерной стенки в расчетном сечении

h ст = (1,125 + 0,952 × 0,1) — 2 × 0,144 ≈ 0,932м

h стф = 932/12 = 77,6 > 50; γ = a / h ст = 1,125/0,932 ≈ 1,2м.

По графикам на рис. 18и 19 прил. 5 для фанеры ФСФ и γ = 2 находим K и = 18 и K τ = 3.

Момент инерции и статический момент для расчетного сечения x 2, приведенные к фанере

I пр = 12003*1,2*2\12+2[155*1443\12+155*144(932\2)2]*1000\1,2*900= 91 × 108 мм4;

S пр = 155*144*466*1000\1,2*900= 9,3× 106 мм3.

Изгибающий момент и поперечная сила в этом сечении

M = qx 2 (lx 2)/2 = 4,98 × 0.952(15 — 0,952)/2 = 33,3 кН × м;

Q = q (l /2 — x) = 4,98(15/2 — 0,925) = 32,7 кН.

Нормальные и касательные напряжения в фанерной стенке на уровне внутренней кромки поясов

σст = M 0,5 h ст / I пр = 33,3 × 106 × 0,5 × 1200/91 × 108 = 2,1 МПа;

τст = QS пр /(I пр Σδф) = 32,7 × 103 × 9,3 × 106/(91 × 108 × 2 × 1012) = 1,7 МПа.

По СНиП II-25-80 формула (48) проверяем выполнение условия устойчивости фанерной стенки:

а) в опорной панели

σст/[ K и (100δ/ h ст)2] + τст/[ K τ (100δ/расч)2] = 2,1/[18(100/77,6)2 + 1,7/[3(100/77,6)2] = 0,68 < 1, где h ст / δ = 77,6;

б) в расчетном сечении с максимальными напряжениями изгиба (x = 6,45 м) при h ст /δ = 1,62/0,012 = 135 > 50;

γ = a / h ст = 1,125/1,62 = 0,69, K и = 25 и K τ = 3,75.

Напряжения изгиба в фанерной стенке на уровне внутренней кромки поясов

σст = Mx 0,5 h ст / I пр = 137,3 × 106 × 741/128,2 × 108 = 7,9 МПа,

где I пр = 128,2× 108 мм4;

τст = QxS пр /(I пр Σδф) = 5,2 × 103 × 10,3 × 106/(128,2 × 108 × 2 × 12) = 0,174 МПа,

где Q = q (l /2 — x) = 4,98(15/2 – 6,45) = 5,2 кН,

S = 10,3× 106 мм3.

Используя СНиП II-25-80, формула (48), получим

7,9/[25(100/135)2] + 0,174/[3,75(100/135)2] = 0,66 < 1.

Производим проверку фанерных стенок в опорном сечении на срез в уровне нейтральной оси и на скалывание по вертикальным швам между поясами и стенкой в соответствии со СНиП II-25-80, пп. 4.27 и 4.29.

Момент инерции и статический момент для опорного сечения, приведенные к фанере, определяем как и ранее

I пр = 129,7 × 108 мм4; S пр = 9,5 × 106 мм3;

τср = QmaxS пр /(I пр Σδф) = 7,9 × 103 × 9,5 × 106/(129,7 × 108 × 2 × 12) = 2,4 < R фср n = 6/0,95 = 6,3 МПа;

τск = QmaxS пр /(I пр nh и) = 7,9 × 103 × 9,5 × 106/(129,7 × 108 × 4 × 144) = 0,75 < R фск n = 0,8/0,95 = 0,84 МПа.

Прогиб клеефанерной балки в середине пролета определяем согласно п. 4.33 по формуле (50) СНиП II-25-80. Предварительно определяем:

f = f 0 [1 + c (h / l)2]/ к,

где f 0 = 5 q н l 4 /(384 El) = 5 × 3,72 ×154× 1012/(384 × 248 × 1012) = 9,8 мм.

Здесь EI = E д I д + E ф I ф = 104 × 175 × 108 + 104 × 0,9 × 1,2 × 131,2 × 108 = 316,7 × 1012 Н × мм2 (СНиП II-25-80, прил. 4, табл. 3); значения коэффициентов к = 0,4 + 0,6β = 0,4 + 0,6 × 1125/1626 = 0,815 и c = (45,3 — 6,9β)γ = (45,3 — 6,9 × 1125/1626)2 × 144 × 132[2 × 12(1626 — 144)] = 48,1;

тогда

f = 9,8[1 + 48,1(1,6 × 103/15 × 103)2]/0,815 = 7,3 мм и f / l = 7,3/15 × 103 = 1/1700 < 1/300 (СНиП II-25-80, табл. 16).
3.2. Статический расчет балки

Расчет балки ведем при двух сочетаниях нагрузки:

I. Постоянная и снеговая нагрузки равномерно распределены по всему пролету (g+P1):

Рис. 7. Первое сочетание нагрузок на раму

;

;

;

;

.

II. Постоянная нагрузка по всему пролету и снеговая равномерно распределена на 0,5 пролета (g+P2):

Рис. 8. Второе сочетание нагрузок на раму

;

;

;

;


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.07 с.