Сущность и виды нивелирования — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Сущность и виды нивелирования

2019-12-20 861
Сущность и виды нивелирования 0.00 из 5.00 0 оценок
Заказать работу

Геометрическое нивелирование

Геометрическое нивелирование или нивелирование горизонтальным лучом выполняют специальным геодезическим прибором - нивелиром; отличительная особенность нивелира состоит в том, что визирная линия трубы во время работы приводится в горизонтальное положение.

Нивелирование из середины.

При нивелировании из середины нивелир устанавливают посредине между точками А и В, а на точках А и В ставят рейки (рис. 1). При движении от точки A к точке B рейка в точке А называется задней, рейка в точке В - передней. Сначала наводят трубу на заднюю рейку и берут отсчет a, затем наводят трубу на переднюю рейку и берут отсчет b. Превышение точки B относительно точки А получают по формуле:

h = a - b.

Рис. 1 Рис. 2

Контролем нивелирования на станции по способу из середины является определение превышения с использованием черной и красной сторон реек:

hч = aч – bч

hк = aк – bк.

Если hч - hк I ≤ 4 мм, то за окончательное значение принимаем среднее арифметическое hср = (hч + hк)/2.

Если a > b, превышение положительное, если a < b - отрицательное. Отметка точки В вычисляется по формуле:

Hв = Hа + hср.

Высота визирного луча над уровнем моря называется горизонтом прибора и обозначается Hг:

ГП = HА + a = HВ + b.

Нивелирование вперед.

При нивелировании вперед нивелир устанавливают над точкой А так, чтобы окуляр трубы был на одной отвесной линии с точкой. На точку В ставят рейку. Измеряют высоту нивелира i над точкой А и берут отсчет b по рейке (рис.2). Превышение h получают по формуле:

h = i - b.

При способе вперед для контроля нивелир поднимают или опускают на несколько сантиметров, при этом высота прибора и отсчет изменится

h, = i, - b,

Если I h – h, I ≤ 4 мм, то за окончательное значение принимаем среднее арифметическое hср = (h + h,)/2.

Отметку точки B можно вычислить через превышение по формуле или через горизонт прибора:

Hв = ГП - b.

Классификация и основные характеристики нивелирных сетей

Государственная нивелирная сеть строится по принципу от общего к частному, делится на:

  • Нивелирование I класса
  • Нивелирование II класса
  • Нивелирование III класса
  • Нивелирование IV класса
  • Техническое нивелирование

является главной высотной основой топографических съемок всех масштабов и геодезических работ, выполняемых для удовлетворения потребностей народного хозяйства, науки и обороны страны.

Нивелирные сети I и II классов создают единую систему высот на территории страны, их используют для решения научных задач: изучения вертикальных движений земной поверхности и исследования физической поверхности Земли, определения разности высот поверхностей морей и океанов и т. п.

Нивелирные сети III и IV классов создают для выполнения топографических съемок и решения инженерно-геодезических задач. Особо следует отметить высокоточные нивелирные сети на геодинамических и техногенных полигонах, создаваемых для изучения современных движений земной коры, поиска предвестников землетрясений и т. п.

Средние квадратические ошибки нивелирования определяют по формулам

где d = hnp. - hoбp., где hnp. и hoбp. — превышения по секциям в прямом и обратном ходах, мм; r — длина секции, км; s — накопление разностей ∑d на участке (линии), мм; L — длина участка (линии), км, L≥ 100 км. Характеристики точности и размеры полигонов приведены в таблице 2.

Таблица 2

 

Характеристика

Класс нивелирования

I II III IV
Предельная средняя квадратическая ошибка: случайная η, мм/км Систематическая σ, мм/км 0,8 0,08 2,0 0,20 5,0 - 10,0 -
Допустимая невязка f, мм, в полигонах и по линиям, L- в км 3√L 5√L 10√L 20√L

Периметры нивелирных полигонов, км

 
1) обжитые районы 1200 400 60-150 20-60
2) малообжитые районы 2000 1000 100-300 25-80
3) локальные и площадные геодинами­ческие полигоны 40 20 - -
4) застроенная территория города   50 25 8
5) незастроенная территория города   80 40 12

Периметры нивелирных полигонов I класса в городах зависят от очертания городской территории.

Через 25 лет, а в сейсмоактивных районах через 15 лет, нивелируют повторно все линии I класса и через 35 и 25 соответственно — II класса.

На линиях I, II, III и IV классов закладывают вековые, фундаментальные, грунтовые, скальные, стенные и временные реперы.

Вековые реперы обеспечивают продолжительную сохранность главной высотной основы, позволяют изучать вертикальные движения земной коры и колебания уровней морей и океанов, ими закрепляют места пересечений линий нивелирования I класса. Фундаментальные реперы закладывают на линиях нивелирования I и II классов не реже чем через 60 км (в сейсмоактивных районах — через 40 км), на узловых точках, вблизи морских, речных и озерных уровенных постах. В 50-150 м от фундаментального репера закладывают репер-спутник.

Грунтовые, скальные и стенные реперы используют для закрепления нивелирных сетей I, II, III и IV классов. Временные реперы (сохраняются несколько лет) служат высотной основой для топографических съемок, их вклю-i чают в ходовые линии нивелирования I, И, III и IV классов.

Местоположение реперов опознают на топокартах масштаба 100 000-1:25 000 и крупнее и на аэроснимках, их прилагают к материалам нивелирования, по карте определяют геодезические координаты репера (с ошибкой 0,25'). Координаты фундаментальных реперов определяют геодезическими методами с ошибкой не более 1 м.

Для перехода к системе нормальных высот измеренные превышения межь ду реперами I и II классов, а также нивелирования III класса в горах исправляют поправками

где γm— приближенное значение нормального, ускорения силы тяжести, на территории СНГ γm = 9,8 м/с2; γA, γB — нормальные ускорения силы тяжести на отсчетном эллипсоиде на реперах А и В; (g - γ)m, Нm — среднее из аномальной силы тяжести и абсолютных высот на реперах А и В; h — измеренное превышение между реперами А и В.

Нивелирные сети в городах, населенных пунктах и на промышленных площадках должны обеспечивать все потребности городского хозяйства и строительства, превышения между наиболее удаленными реперами нивелирной сети города должны быть известны с ошибкой не более 30 мм.

 

Устройство нивелира


Нивелиры в зависимости от точности разделяются на высокоточные, точные и технические. Рассмотрим глухой нивелир с цилиндрическим уровнем типа Н – 3, который относится к классу точных. Главным требованием, предъявляемым к таким нивелирам, является параллельность оси цилиндрического уровня и визирной оси трубы. Нивелир Н – 3 состоит из верхней части, несущей зрительную трубу – 6 с цилиндрическим – 7 и круглым – 3 уровнями, наводящим – 11, элевационным – 4 и закрепительным – 9 винтами, и нижней, представляющей собой подставку с тремя подъёмными винтами – 1 и прижимной пластиной – 11 (рис.43).

Установка нивелира в рабочее положение производится таким же способом, как и первая поверка теодолита, но исправление уровня производится элевационным винтом.

ZZ1 – вертикальная ось вращения нивелира;

VV1 – визирная ось зрительной трубы;

UU1 – ось цилиндрического уровня;

ОО1 – ось круглого уровня.

На рисунке 39 изображено взаимное расположение осей.

 

Рис. 39 Расположение осей нивелира

 

На рисунке 40 изображены основные части нивелира.

1 – подъёмные винты

2 – подставка

3 – круглый уровень

4 – элевационный винт

5 – кремальера

6 – зрительная труба

7 – цилиндрический уровень

8 – визир

9 – закрепительный винт

10 – установочная прижимная пластина

11 – наводящий винт

 

Рис.40 Основные части нивелира

 

 

Классификация нивелиров

По способу измерения и виду носителя информации нивелиры подразделяются на две группы: а) оптико-механические и б) нивелиры электронные. В оптических нивелирах принцип измерения основан на законах геометрической оптики и визуального отсчитывания по рейке оператором. В нивелирах электронных принцип измерений основан на цифровой обработке изображений и электронного снятия отсчетов.

По способу установки луча визирования в горизонтальное положение нивелиры подразделяются также на две группы: первая — нивелиры с цилиндрическим уровнем при зрительной трубе (как правило, это – оптико — механические) и нивелиры с компенсатором. Рассмотрим некоторые типы оптико-механических приборов как отечественных так и зарубежных фирм.

Инструкцией [5] рекомендуется для нивелирования III класса применять нивелиры с увеличением трубы не менее 30x и ценой деления контактного уровня не более 30″ на 2 мм ампулы, а для нивелирования IV класса с увеличением трубы не менее 25x и ценой деления контактного уровня не более 30″ на 2 мм шкалы ампулы, ошибка самоустановки линии визирования у нивелиров с компенсатором не более 0″.5.

В странах СНГ по ГОСТ 10528 — 90 «Нивелиры. Общие требования» все нивелиры оптического типа по точности подразделяются на три группы:

а) высокоточные — для определения превышений со средней квадратической ошибкой не более 0.5 мм на 1 км двойного хода;

б) точные — для определения превышений со средней квадратической ошибкой не более 3 мм на один километр двойного хода;

в) технические — для определения превышений со средней квадратической ошибкой не более 10 мм на 1 км двойного хода.

По этому ГОСТу в основном в России изготавливаются следующие нивелиры:

— высокоточный Н — 05 — для нивелирования I и II классов, рис.(3.1);

— точный Н — 3 — для нивелирования III и IV классов, рис.(3.2);

— технический Н — 10 — для технического нивелирования (при обосновании топографических съемок и инженерно — геодезических изысканий в строительстве). Изучается в первой части дисциплины «Геодезия.

Рисунок 3.1 Нивелир Н-05

Рис.3.2 – Нивелир Н-3

В перечисленных нивелирах цифры, стоящие после буквы Н, обозначают средние квадратические ошибки (в мм) определения превышений на 1 км двойного хода.

 


При наличии в нивелире компенсатора для автоматического приведения визирной луча трубы в горизонтальное положение в шифре нивелира добавляется буква «К», например Н-3К (рис. 3.3). Если нивелир снабжен лимбом для измерения углов, то в шифре нивелира добавляется буква «Л», например нивелир 2Н-3Л (рис.3.4). Если нивелир снабжен лимбом и компенсатором, то в обозначении добавляются обе буквы, например, Н-3КЛ. В настоящее время выпускаются нивелиры серии 2Н (рис.3.4)) и 3Н (рис.3.5), которые выпускает Уральский оптико–механический завод (Россия). Технические характеристики этих нивелиров представлены в таблице 3.1.

Таблица 3.1 – Технические характеристики оптических нивелиров серии Н-05, Н-3

 

Характеристикинивелиров Н-05 3Н-2КЛ Н-3 2Н-3Л Н-3К Н-3КЛ
Увеличение 42.3* 30* 30* 31,8* 30* 30*
Уголполя зрения 55’     1o20’ 1o 16’ 1 1o 15’
CКП измерения превышения на 1км двойного хода, мм c микрометром, мм     0,4   2 1   2,5   2,5   3       2,5
СКПизмерения горизонтального угла       8′   2’
Диапазонработы компенсатора   ±15’     15’ 20’
Погрешностькомпенсатора   ±0,3’’       ±0,5”  
Ценаделения установочного уровня 5’ 10’ 10’   10’ 10’
Ценаделения уровня при трубе на 2 мм 10’’   15’’      

 

 

При нивелировании III и IV классов допускается применение ранее выпускавшихся нивелиров с увеличением трубы и ценой деления уровня, соответствующим требованиям инструкции [5]. Это нивелиры: Н1, Н2, НА – 1.

 


Рис. 3.3 Нивелир Н-3К

Рис.3.4 — Нивелир 2Н-3Л

Рисунок 3.5 – Нивелир 3Н-2КЛ Рисунок 3.6 – Нивелир SOKKIA, (B1)

В мире известны многие фирмы, занимающиеся разработкой и производством геодезического оборудования и, в частности, нивелиров.

Японская фирма SOKKIA (до 1992 ее название – SOKKISHA) выпускает ряд нивелиров с компенсатором, горизонтальным кругом и зрительной трубой прямого изображения: B1C, B1, B20, B21, C30, C31, C32, C41 и др.(рис.3.6 – 3.10)) Эти нивелиры обеспечивают точность нивелирования от 0,5мм до 2,5мм на 1км двойного хода (см. таблицу 3.2)..

Рисунок 3.7 — Нивелир B1C Рисунок 3.8 — Нивелир В2С

Рисунок 3.9 – Нивелир B2A Рисунок 3.10 – Нивелир TTL6

Для повышения точности нивелиры B1, B1C, B2C комплектуются насадками с плоско-параллельной пластинкой — оптический микрометр (рис.3.11)

 


Рисунок 3.11 – Нивелир серии В с Рисунок 3.12 – Нивелир с устрой-

оптическим микрометром ством подсветки нитей

. Большинство нивелиров изготовлены в водонепроницаемом исполнении (кроме С41, PL1 и TTL6). При плохом освещении возможно применение устройства подсветки нитей (рис. 3.12), при работе в стесненных условиях — диагонального окуляра (рис.3.13).

Рисунок 3.13 – Диагональный окуляр (насадка)

Минимальный предел визирования от 0,3м (нивелир С3E) до 2.3м (В1).

Нивелиры, кроме PL1 и В1 оснащены горизонтальным кругом с ценой деления от10’ (B1C, B2C) до 1о в остальных. Чувствительность компенсаторов с магнитным демпфером равна 0,3’’ – 0,5’’, предел работы – 10’. Цена деления круглого уровня – 10’, в нивелире PL1 – 3,5’. Нивелиры PL1 и TTL6 без компенсатора с цилиндрическим уровне при зрительной трубе (рис. 3.10), цена деления которых составляет 10’’ (PL1) и 40’’ (ТТL6). Средняя квадратическая ошибка превышения на 1 км двойного хода в нивелирах B1, B1C, B2C при использовании оптической насадки (микрометра) равна 0,5мм.

Таблица 3.2 – Нивелиры оптические с компенсаторами, SOKKIA

Шифры нивелиров СКП измерения превышения на 1км хода, мм Увеличение зрительной трубы, крат Масса, кг
В1С_31   0,8 32 3,2
В1-31 0,8 32 3,0
PL1-39 0,2 42 4,9
В20-31 1,0 32 1,7
В21-31 1,5 30 1,7
С30-3102   2,0 26 1,6
С31-3102 2,0 24 1,6
С32-38 2,0 22 1,6
С41-31 2,5 20 1,0

Фирмы WILD и KERN выпускают оптико – механические нивелиры cерии NA, NK и др. (рис.3.14)

 

Некоторые технические данные по отдельным нивелирам фирм Wild и Kern (концерн Leica) представлены в таблице 3.2.

Нивелиры Wild NA20, Wild NA24, Kernltvel предназначены для работы в сложных условиях строительных площадок, продольного нивелирования, имеют контрольную кнопку для проверки работы компенсатора, бесконечный винт для точного визирования. Нивелир Kernlevel вместо привычного трегера с тремя подъемными винтами имеет шарнирный трегер для установки прибора в горизонтальное положение. Если ось вращения нивелира Kernltvel наклонена, то в поле зрения трубы появляется предупреждающий сигнал – красная полоска.

Нивелиры Wild NA28 и Wild NA2 (NAK2) применяются для точного нивелирования, а при использовании дополнительного приспособления – микрометра с плоскопараллельной пластинкой – и для высокоточного нивелирования. Корпус зрительной трубы и компенсатора нивелира NA28 заполнены газом (водонепроницаемы). Компенсаторы нивелиров также имеют контрольную кнопку для проверки работы компенсатора. В нивелире NA2 (NAK2) есть возможность грубой и точной фокусировки. При помощи опти

 


ческого микрометра отсчеты по рейке выполняются с точностью 0,1мм с оценкой до 0,01мм.

Нивелир NK2 снабжен зрительной трубой, которую можно поворачивать вокруг визирной оси на 180о, и реверсионным уровнем при трубе.

В высокоточном нивелире N3 элевационный винт имеет отсчетный барабан.

Нивелиры с компенсатором

NA20 NA24 KERNLEVEL

NA28 NA2(NAK2)

Нивелиры с уровнем

NK2 N3

Рисунок 3.14 – Нивелиры фирм WILD и KERN

Фирма Pentax также выпускает ряд оптических нивелиров серии AL: AL240, AL240R, AL270, AL270R, AL300, AL320, AL320R, AL320S (рис. 3.15). Зрительные трубы изготовлены в водонепроницаемом исполнении, прямого изображения. Увеличение зрительных труб от 24* (AL240) до 32* (AL320S). Нивелиры компактны и легки от1,6 до 2,0кг. Все нивелиры снабжены компенсатором с подвижной сеткой. Предел работы компенсаторов 12’, чувствительность ±0,5”. Средняя квадратическая погрешность на 1км двойного хода составляет от ±2мм (AL240) до 0,3мм (AL320S). Нивелиры AL300, AL320, AL320R, AL320S имеет дополнительное приспособление – оптический микрометр с плоскопараллельной пластинкой. Нивелиры AL240R, AL270R,

AL320R вместо подъемных винтов трегера имеют шаровую основу для быстрого горизонтирования.

 

НИВЕЛИРНЫЕ РЕЙКИ

Для технического нивелирования используются деревянные 3- или 4-метровые рейки, иногда складные, с сантиметровыми делениями, двусторонние (рис. 7.4). Низ рейки называют пяткой.

Рейки для нивелиров с обратным (см. рис. 7.4, а) или прямым изображением (см. рис. 7.4, б) отличаются надписями. Одна сторона реек выкрашена в черный цвет (черная сторона), другая — в крас-

Рис. 7.4. Нивелирные рейки, костыль и башмак

ный (красная сторона). На черной стороне деления оцифрованы снизу верх, начиная с нуля. На красной стороне отсчеты возрастают также снизу вверх, но счет начинается с некоторого числа, например, 4687 или 4787 мм. Этот отсчет называют разностью пяток. Очевидно, что разность отсчетов по красной и черной сторонам рейки, т.е. разность пяток, должна быть одна и та же. Красная сторона используется для контроля превышений, измеренных по черной стороне, и повышения точности их определения.

При нивелировании рейки могут устанавливаться на колья, штыри, специальные костыли или башмаки (рис. 7.4, в). Костыли представляют собой металлические заостренные внизу стержни диаметром 30—40 мм со сферической головкой вверху, на которую устанавливается рейка. Вверху костылей имеется металлическое кольцо для их переноски.

Перед началом работ выполняется поверка реек с помощью контрольного метра или стальной рулетки. Поверка реек заключается в том, что дважды измеряются метровые и дециметровые деления. Ошибка дециметровых делений не должна превышать 1 мм, длина всей рейки не должна отличаться от номинального значения более чем на 2 мм.

 

Техническое нивелирование

Спомощью технического нивелирования определяют высоты пунктов съемочного обоснования, нивелируют профили для линейных сооружений, геофизические профили, поверхности местности сравнительно большой площади.

Ходы геометрического нивелирования прокладывают между двумя исходными реперами в виде одиночных ходов (рис. 9.5 а), между тремя и более исходными реперами в виде разветвленных систем нивелирных ходов с одной (рис. 9.5б) или несколькими (рис. 9.5в) узловыми точками. Замкнутые нивелирные ходы, опирающиеся только на один исходный репер прокладывают только в исключительных случаях.

247

Рис. 9.5. Виды ходов геометрического нивелирования

Допустимые длины ходов высотного обоснования определяются как высотой сечения рельефа, заданной для топографической съемки, так и характеристиками самих ходов (табл. 9.2).

      Таблица 9.2
Характеристика хода

Допустимая длина хода (км) при высоте сечения рельефа (м)

  0,25 м 0,50 м 1,00 м
Между двумя исход- 2 8 16
ными пунктами      
Между исходным 1,5 6 12
пунктом и узловой      
точкой      
Между двумя 1 4 8
узловыми точками      

Техническое нивелирование выполняется также при инженерных изысканиях для проектирования строительства с целью получения информации о рельефе местности. При проектировании различных линейных сооружений (дорог, трубопроводов, ЛЭП, каналов и т.п) техническое нивелирование называется продольным илинивелированием трассы. Часто при проектировании строительства производят техническоенивелирование площади по квадратам, либо другим методом.

Для производства технического нивелирования используют нивелиры типа Н10 (§ 46) с увеличением зрительной трубы не менее 20х и ценой деления уровня при зрительной трубе не более 45" на 2 мм, либо аналогичные нивелиры с самоустанавливающейся линией визирования (с компенсатором) типа Н10К. Применяются одноили двусторонние деревянные складные рейки с ценой деления 1 или 2 см, а также металлические телескопические рейки с делениями 1 см и такие же двухсторонние рейки с миллиметровыми и сантиметровыми делениями.

Расстояние от нивелира до рейки (плечо) на станции не должно превышать 150 м. Его определяют по нитяному дальномеру зрительной трубы. Следует придерживаться равноточности в результатах измерений, т.е., по возможности, обеспечивать примерно равные плечи на всех станциях.

248

Порядок работы на станции при техническом нивелировании при использовании двусторонних нивелирных реек следующий:

-отсчеты по черной и красной сторонам задней рейки;

-отсчеты по черной и красной сторонам передней рейки.

Превышения, определенные по черным и красным сторонам реек не должны отличаться более, чем на 5 мм. Колебания нуля красной пятки реек (разности красного и черного отсчетов по рейке, установленной в данной точке) в нивелирном ходе не должны превышать также 5 мм.

Если рейки, используемые при нивелировании, односторонние, то порядок работы на станции другой:

-отсчет по задней рейке;

-отсчет по передней рейке;

-переустановка нивелира на станции (изменение примерно на 10 см гори--зонта прибора);

-отсчет по передней рейке;

-отсчетпо задней рейке.

Разность в превышениях, полученных при двух горизонтах прибора не должна быть более 5 мм.

Весьма важным при выполнении работ является обеспечение контроля взятия отсчетов и величины измеренного превышения. Для этого и пременяют двусторонние рейки, разности красного и черного отсчетов по которым должна быть постоянной в пределах указанного выше допуска в 5 мм. Контрольным измерением является повторение указанных разностей при другом горизонте прибора. Часто выполняют перестановку рейки дополнительно на сторожок, обозначающий данную точку. При этом разность отсчетов на точку и сторожок должна быть одинаковой при нивелировании с двух соседних станций.

Общая оценка точности хода геометрического нивелирования выполняяется по формулам (9.9), (9.10) и (9.11). Если полученная практическая невязка хода не превышает допустимой величины, то ее распределяют поровну на все превышения хода в виде поправок vi со знаком, обратным знаку невязки:

 

ν i = −

fh

,

(9.24)

 

n

       

где n – число станций (превышений) в ходе. При этомå ν i = − fh, т.е. вся

невязка должна быть распределена на поправки. Полученные поправки вводят в измеренные превышения и вычисляют высоты связующих точек хода.

При производстве технического нивелирования попутно определяют высоты характерных точек рельефа местности, урезов воды в реках и водоемах, а также высоты устойчивых по высоте объектов (крышек колодцев, валунов, головок рельсов и т.п.). Указанные точки являются промежуточными, на местности они, по возможности, маркируются, и на них составляют абрис с привязкой промерами до ближайших объектов ситуации или ориентиров.

 

 

Нивелирование по квадратам

Нивелирование поверхности — один из способов топографической съемки, при котором на местности по определенному правилу располагают точки, высоты которых определяют геометрическим нивелированием. Наибольшее практическое применение имеет метод квадратов и метод магистралей с поперечными профилями. Создание плана по результатам нивелирования по квадратам начинают с разбивки в заданном масштабе сетки квадратов, у каждой выписывают округленную до сантиметра высоту. Согласно абрису наносят и вычерчивают в условных знаках ситуацию, а затем путем интерполирования горизонталями изображают рельеф.

Топографическую съемку небольших участков равнинной местности с небольшим количеством контуров при высоте сечения рельефа через 0,1; 0,25; 0,5 м выполняют нивелированием поверхности по квадратам, прямоугольникам, характерным линиям рельефа и т. п. Отметки пикетов во всех способа определяют точек.

При нивелировании по квадратам геометрическим нивелированием, различие состоит в методе определения планового положения и мерным прибором на местности разбивают сетку квадратов, в вершинах квадратов забивают колышки. Сначала строят квадраты со сторонами 100, 200 или 400 м, а затем получая более мелкие квадраты со сторонами 40 м при съемке в масштабе 1:2000, 20 м — при съемке в масштабе 1:1000 и 1:500. При разбивке квадратов выполняют съемку ситуации. Результаты съемки фиксируют в абрисе (рис. 1).

Рис. 1. Абрис нивелирования поверхности по квадратам (стрелками показано направление скатов).

Нивелир устанавливают так, чтобы с меньшего количества станций выполнить съемку всего участка. Установив нивелир на станции I, берут отсчет по рейке, поставленной на опорной высотной точке (например на Рп I) и вычисляют:

ГП = Нрn + а,

где Нрn — отметка репера; а — отсчет по рейке, установленной на репере. У номеров вершин квадратов выписывают отсчеты по рейкам, установленным на них, в абрисе штриховыми линиями показывают, на какие вершины квадратов выполнено нивелирование с данной станции. Отметки вершин квадратов вычисляют по формуле:

Нi = ГП - а

Подобным образом выполняют нивелирование и с других станций с обязательным определением ГП на каждой станции по опорным высотным пунктам или связующим точкам. С каждой последующей станции нивелируют несколько связующих точек, при этом (см. рис. 1.27) а1+ b2 = а2 + b1, расхождение между этими суммами не должно превышать 10 мм.

 

33

Тригонометрическое нивелирование - метод определения разностей высот точек на земной поверхности по измеренному углу наклона и длине наклонной линии визирования или её проекции на горизонтальную плоскость.

Рис.5 – Тригонометрическое нивелирование

Тригонометрическое нивелирование:

i - высота прибора;

V - высота визирования;

h - разность высот (превышение) между точками A и B;

S - линия визирования; s - горизонтальная проекция линии визирования;

n - угол наклона визирного луча.

Превышение h (рис.5) определяют по формулам:

h = s * tg ν + i - V или

h = S * sin ν + i - V,

где ν - угол наклона визирного луча;

S - длина линии визирования;

s - горизонтальная проекция;

i - высота прибора;

V - высота визирования.

Тригонометрическое нивелирование применяется при топогеодезических работах на земной поверхности и маркшейдерских съёмках в горных выработках, наклоны которых свыше 8°.

Тригонометрическое нивелирование называют также геодезическим или нивелированием наклонным лучом. Оно выполняется теодолитом; для определения превышения между двумя точками нужно измерить угол наклона и расстояние. В точке А устанавливают теодолит, в точке В - рейку или веху известной высоты V. Измеряют угол наклона зрительной трубы теодолита при наведении ее на верх вехи или рейки (рис.6 4.38). Длину отрезка LK можно представить как сумму отрезков LC и CK с одной стороны и как сумму отрезков LB и BK с другой. Отрезок LC найдем из ΔJLC: LC = S*tg ν, остальные отрезки обозначены на рисунке.

Рис.6 4.38 – Измерение угла наклона зрительной трубы теодолита

Тогда

LC + CK = LB + BK и S * tg(ν) + i = V + h.

Отсюда выразим превышение h

h = S * tg(ν) + i - V. (7 4.67)

Выведем формулу превышения из тригонометрического нивелирования с учетом кривизны Земли и рефракции. Вследствие рефракции луч от верхнего конца вехи идет по кривой, а визирная линия трубы будет направлена по касательной к этой кривой в точке J. Визирная линия трубы пересечет продолжение вехи в точке L1, а не L. Проведем уровенные поверхности в точках A, B, J (рис.7 4.39).

Проведем касательную к уровенной поверхности в точке J и обозначим: высоту прибора - i, высоту вехи - V, горизонтальное проложение линии AB - S.

Превышение точки B относительно A выражается отрезком BK. Отрезок L1K на рис. 7 4.39 - Тригонометрическое нивелирование с учетом кривизны Земли и рефракции можно выразить через его части двумя путями:

L1K = L1E + EF + FK,

L1K = L1L + LB + BK.

Рис. 7 4.39 - Тригонометрическое нивелирование с учетом кривизны Земли и рефракции

 

 

Отрезок L1E найдем из Δ JL1E. Этот треугольник можно считать прямоугольным, так как угол L1EJ очень мало отличается от прямого, всего лишь на величину центрального угла ε =(S / R)*r. Этот угол при S = 1 км не превосходит 0.5'.

Итак,

L1E = JE * tg(ν),

но поскольку JE = S, то L1E = S * tg(ν).

Отрезок EF выражает влияние кривизны Земли:

EF = p = S2 / 2*R;

отрезок FK равен высоте прибора FK = i; отрезок L1L выражает влияние рефракции:

L1L = r * (S2 / 2*R) * k = p * k;

отрезок LB равен высоте вехи V.

Таким образом,

S * tg(ν) + p + i = r + V + h,

откуда

h = S * tg(ν) + (i - V) + (p - r),

или

h = S * tg(ν) + (i - V) + f. (8 4.68)

При измерении расстояния с помощью нитяного дальномера формула превышения несколько изменяется; так как S = (Cl + c)* Cos2(ν), то

h = 0.5*(Cl + c)*Sin(2*ν) + i - V + f = h'+ i - V + f,

Величину h '= 0.5*(Cl + c)*Sin(2*ν) называют тахеометрическим превышением.

При S = 100 м величиной f можно пренебречь, так как f = 0.66 мм.

S2, где S - расстояние (в сотнях метров).

Ошибка измерения превышения из тригонометрического нивелирования оценивается величиной от 2 см до 10 см на 100 м расстояния.

При последовательном измерении превышений получается высотный ход; в высотном ходе углы наклона измеряют дважды: в прямом и обратном направлениях.

 

 

СУЩНОСТЬ И ВИДЫ НИВЕЛИРОВАНИЯ

Нивелированиеэто вид геодезических измерений, в результате которых определяют превышения точек (разность высот), а также их высоты над принятой уровенной поверхностью. По результатам нивелирования изображают рельеф местности на планах и картах, строят профили земной поверхности, составляют организационно-хозяйственные планы лесных питомников, проектируют парки, решают другие задачи лесного и садово-паркового хозяйств. Существует несколько видов нивелирования: геометрическое, тригонометрическое, барометрическое, гидростатическое, механическое.
Геометрическое нивелирование – это нивелирование горизонтальным лучом визирования. Этот вид нивелирования выполняют с помощью геодезического прибора – нивелира и реек. Данный метод наиболее распространен и относительно прост. Его применяют для определения превышений с высокой степенью точности, когда погрешность при определении превышений составляет не более 1 мм на 1км расстояния.
Тригонометрическое нивелирование – эго нивелирование наклонным лучом визирования. Выполняют с помощью геодезических приборов, позволяющих измерять вертикальные углы или превышения (теодолиты, тахеометры, кипрегели). При данном виде нивелирования превышение можно определять с погрешностью до 4 см на 100 м расстояния.
Барометрическое нивелирование – определение высот точек или превышении по измерениям давления воздуха. Давление воздуха измеряют с помощью приборов, называемых барометрами, а по разности давлений определяют превышение. Точность барометрического нивелирования невелика (колеблется от 0,5 до 2 м) и зависит от изменения метеоусловий. Применяют этот способ нивелирования в начальный период инженерных изысканий для всякого рода рекогносцировочных обследований.
Гидростатическое нивелирование основано на свойстве жидкости в сообщающихся сосудах находиться на одном уровне. Превышение между точками может быть получено как разность отсчетов по шкалам сосудов соединенных между собой шлангом. Гидростатическое нивелирование применяется при строительно-монтажных работах для выверки конструкций в стесненных условиях. Часто используется при наблюдениях за деформациями инженерных сооружений. Точность его равна точности геометрического нивелирования.
Механическое нивелирование производится при помощи специальных приборов, устанавливаемых на автомобилях, велосипедах, железнодорожных вагонах и т. д. При движении прибора сразу вычерчивается на специальной ленте профиль местности. Точность механического нивелирования примерно равна точности тригонометрического нивелирования. Этот способ находит применение при изысканиях линейных сооружений и для контроля положения железнодорожных путей.
Стереофотограмметрическое нивелирование реализуется при обработке стереопар фотоснимков одной и той же местности, полученных как при наземной фототеодолитной съемке, так и при воздушной съемке с летательных аппаратов. При наземной съемке используют фот


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.189 с.