Акустическое поле преобразователя — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Акустическое поле преобразователя

2019-12-19 239
Акустическое поле преобразователя 0.00 из 5.00 0 оценок
Заказать работу

Акустическое поле – это зависимость упругих смещений, давления или интенсивности от положения исследуемой точки в пространстве. Различают поля излучения, приема и излучения-приема [19].

Поле излучения, созданное преобразователем - излучателем, – это совокупность значений принятого пробным точечным приемным преобразователем сигнала, в каждой точке поля. Поле приема преобразователя – это совокупность значений принятого сигнала, при помещении точечного излучателя в каждую точку поля. Величина сигнала, отраженного от дефекта и воспринятого преобразователем, определяется полем излучения-приема. Поле излучения-приема находится как произведение нормированных значений поля излучения и поля приема в каждой точке. Поля излучения и приема одного и того же пьезоэлектрического преобразователя обычно идентичны.

Акустическое поле преобразователя имеет сложную структуру. Сначала рассмотрим поле прямого преобразователя. Пусть преобразователь дисковой формы радиусом а возбуждает акустическое поле. Схематично акустическое поле представляется пучком (рис. 2.22). Линию, проходящую по центру пучка, называют акустической осью излучения. Структура поля пучка совершенно различна в двух областях, называемых ближней и дальней зонами излучения.

 

Рис. 2.22. Поле дискового излучателя

 

В ближней зоне, называемой еще зоной Френеля, пучок в поперечном сечении повторяет сечение пьезопластины. Волновой фронт в пределах пучка приближенно можно считать плоским. В ближней зоне интенсивность изменяется с сильными осцилляциями. Причина осцилляции – интерференция сигналов, приходящих в данную точку среды от разных участков преобразователя. Пути, проходимые от разных участков, различны, поэтому колебания от них приходят с разными фазами. В некоторых точках колебания ослабляют друг друга и интенсивность близка к нулю, в других точках они складываются, образуя максимумы.

Размер ближней зоны, т.е. расстояние от излучателя до последнего максимума интенсивности, вычисляется по формуле:

 

,                                              (2.29)

 

где S изл площадь излучателя.  

Для пьезопластины в форме диска S изл= а2 и

 

.                                                 (2.30)

 

Для излучателя в форме квадрата со стороной а размер ближней зоны определяется аналогично:

 .                                             (2.31)

 

Если поле создается прямоугольным преобразователем со сторонами а1 и а2, где а1 большая сторона, то при a 1 / a 2 >2 можно пользоваться формулой (2.27), где вместо а нужно подставить а1. Если a 1 / a 2 <2, то

 

.                                                (2.32)

 

Максимумы и минимумы в ближнем поле прямоугольного преобразователя сглажены по сравнению с круглым.

Дальняя зона излучения еще называется зоной Фраунгофера. В ней пучок
становится расходящимся, его сечение увеличивается. Осцилляции интенсивности
отсутствуют. Для любой точки в дальней зоне колебания от разных участков излучателя приходят с малым сдвигом фазы и не ослабляют друг друга. Между ближней и дальней зонами находится переходный участок, в котором сечение пучка несколько уменьшается. В дальней зоне акустическое поле имеет вид лучей, исходящих из центра. Угол расхождения пучка определяется по формуле:

.                               (2.33)

 

Коэффициент N имеет значение 0,61 для дискового излучателя и N = 0,5 – для прямоугольного. Произведение  ( – резонансная частота) определяет угол расхождения пучка.

Акустическое поле в дальней зоне характеризуют диаграммой направленности. Диаграмма направленности – это графическое изображение зависимости интенсивности излучения от угла между осью излучения и данным направлением при постоянном расстоянии от излучателя. Вид диаграммы направленности представлен на рис. 2.23 в полярных координатах. Центральную часть диаграммы, в пределах которой интенсивность изменяется от 1 до нуля, называют основным лепестком. В его пределах заключено 80…85 % энергии излучения. Кроме основного, присутствуют еще боковые лепестки диаграммы направленности.

Угол раскрытия диаграммы направленности можно определить несколькими способами. В практике УЗ контроля угол раскрытия часто измеряют по уровню 0,5 от максимума (или -6 дБ). Для измерения ширины раскрытия диаграммы направленности преобразователя можно использовать стандартный образец СО-2.

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.