Значение дыхания для организма. Основные этапы процесса дыхания. Дыхательный цикл. Физиология дыхательных путей. — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Значение дыхания для организма. Основные этапы процесса дыхания. Дыхательный цикл. Физиология дыхательных путей.

2019-08-07 966
Значение дыхания для организма. Основные этапы процесса дыхания. Дыхательный цикл. Физиология дыхательных путей. 0.00 из 5.00 0 оценок
Заказать работу

Ирритантные рецепторы

Ирритантные рецепторы реагируют на действие едких газов, табачного дыма, пыли и холодного воздуха. Полагают, что они располагаются между эпителиальными клетками дыхательных путей. Импульсы от этих рецепторов идут по миелиновым волокнам блуждающих нервов, а рефлекторный ответ заключается в сужении бронхов и гиперпноэ. Некоторые физиологи называют эти рецепторы «быстроадаптирующимися», так как для них характерна быстрая адаптация и, по-видимому, они не только реагируют на вредные для стенок дыхательных путей агенты, но и играют определенную роль в механорецепции. Возможно, возбуждение ирритантных рецепторов гистамином, выделяющимся при приступах бронхиальной астмы, в какой-то степени обусловливает характерный для этого состояния бронхоспазм.

J-рецепторы

J-рецепторы («юкстакапиллярные» рецепторы) называются так потому, что залегают, как считается, в альвеолярных стенках около капилляров. В пользу такого расположения говорит их очень быстрая реакция на введение химических веществ в легочные сосуды. Импульсы от этих рецепторов идут по медленным немиелинизированным волокнам блуждающих нервов, приводя к установлению частого поверхностного дыхания, хотя при сильном раздражении возможна полная его остановка. Есть данные о том, что J-рецепторы могут реагировать на переполнение кровью легочных капилляров и повышение объема интерстициальной жидкости стенок альвеол. Возможно, они играют определенную роль в возникновении одышки (т. е. ощущения затрудненного дыхания), наблюдающейся при левожелудочковой недостаточности и интерстициальной отеке легких.

Значение дыхания для организма. Основные этапы процесса дыхания. Дыхательный цикл. Физиология дыхательных путей.

Дыхание - жизненно необходимый процесс постоянного обмена газами между организмом и окружающей его внешней средой. С помощью дыхания в организм поступает необходимые ему газы (кислород) и удаляются газы, являющиеся продуктами распада (углекислый газ). Так же дыхание играет важную роль в терморегуляции и голосообразовании и вместе с тем является основным признаком жизнеспособности организма.

В процессе дыхания выделяют пять этапов.

1) обмен между атмосферным воздухом и альвеолами - легочная вентиляция
2) обмен между альвеолами и кровью - легочная диффузия
3) перенос между легочными и системными капиллярами (от есть от легких к тканям и обратно) - транспорт кровью
4) обмер между системными капиллярами и клеткам - тканная диффузия
5) потребление клетками кислорода и выделение углекислого газа - клеточное дыхание

Первые два этапа так же называют внешним дыханием, последние две внутренним, а третий - промежуточным.

Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха— 1,2—6 с. Дыхательная пауза различна по величине и даже может отсутствовать.
Дыхательные движения совершаются с определенным ритмом и частотой, которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12—18 в 1 мин.

Дыхательные пути соединяют легкие с окружающей средой. Они начинаются носовыми ходами, затем продолжаются в гортань, трахею, бронхи. За счет наличия хрящевой основы и периодического изменения тонуса гладкомышечных клеток просвет дыхательных путей всегда находится в открытом состоянии. Его уменьшение происходит под действием парасимпатической нервной системы, а расширение – под действием симпатической. Дыхательные пути имеют хорошо разветвленную систему кровоснабжения, благодаря которой воздух согревается и увлажняется. Эпителий воздухоносных путей выстлан ресничками, которые задерживают пылевые частицы и микроорганизмы. В слизистой оболочке находится большое количество желез, продуцирующих секрет. За сутки вырабатывается примерно 20–80 мл секрета (слизи). В состав слизи входят лимфоциты и гуморальные факторы (лизоцим, интерферон, лактоферрин, протеазы), иммуноглобулины А, обеспечивающие выполнение защитной функции. В дыхательных путях содержится большое количество рецепторов, образующих мощные рефлексогенные зоны. Это механорецепторы, хеморецепторы, рецепторы вкуса. Таким образом, дыхательные пути обеспечивают постоянное взаимодействие организма с окружающей средой и регулируют количество и состав вдыхаемого и выдыхаемого воздуха

В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 140—150 мл.

2. Механизм вдоха и выдоха. Давление в плевральной полости, его изменение при дыхании. Эластические свойства легких и стенок грудной полости.

Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц – наружных межреберных и диафрагмы. Поступление воздуха в легкие в значительной степени зависит от отрицательного давления в плевральной полости.
Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта, вырабатываемого альвеолоцитами.

Эластическая тяга легких – сила, с которой ткань стремится к спаданию. Она возникает за счет двух причин:

1) из-за наличия поверхностного натяжения жидкости в альвеолах;

2) из-за присутствия эластических волокон.

Отрицательное внутриплевральное давление:

1) приводит к расправлению легких;

2) обеспечивает венозный возврат крови к грудной клетки;

3) облегчает движение лимфы по сосудам;

4) способствует легочному кровотоку, так как поддерживает сосуды в отрытом состоянии.

Легочная ткань даже при максимальном выдохе полностью не спадается. Это происходит из-за наличия сурфактанта, который понижает натяжение жидкости. Сурфактант – комплекс фосфолипидов (в основном фосфотидилхолина и глицерина) образуется альвеолоцитами второго типа под влиянием блуждающего нерва.

Таким образом, в плевральной полости создается отрицательное давление, благодаря которому осуществляются процессы вдоха и выдоха.

Упругость или эластичность легких, обеспечивающая нормальную работу дыхательной системы, обеспечивается:
- растяжение эластических волокон легких
- поверхностным натяжением жидкости, покрывающей альвеолы

Под действием своей эластичности легкие стремятся уменьшит объем и при этом тянут за собой грудную клетку, однако грудная клетка (ее стенки) так же обладают упругостью (эластичностью), и ее сила она противоположно упругой силе легких, таким образом в конце выдоха эти силы равны и направлены противоположно, и дыхательный аппарат находится в состоянии покоя.

Плевральное давление — это давление жидкости в узкой щели между легочным и париетальным листками плевры. В норме существует слабое присасывание листков плевры друг к другу, т.е. давление является слабо отрицательным. В начале вдоха нормальное плевральное давление составляет около -5 см вод. ст., при таком давлении легкие остаются открытыми в покое. При нормальном вдохе расширение грудной клетки тянет за собой и легкие, и развивается несколько большее отрицательное давление — около -7,5 см вод. Ст

 

3. Газообмен в легких, состав вдыхаемого, выдыхаемого и альвеолярного воздуха. Напряжение газов, растворенных в крови. Парциальное давление газов (кислород и углекислый газ) в альвеолярном воздухе.

Газообмен — совокупность процессов, обеспечивающих переход кислорода внешней среды в ткани живого организма, а углекислого газа из тканей во внешнюю среду.

Для газообмена в легких необходимо:
- постоянная доставка воздуха к альвеолярной стороне газообменной поверхности - легочная вентиляция
- постоянная доставка крови к внутрисосудистый стороне газообменной поверхности - легочный кровоток, или легочная перфузия
- транспорт газов через газообменную поверхность - легочная диффузия

Процесс газообмена
Кровь, которая течет к легким от сердца (венозная), содержит мало кислорода и много углекислого газа; воздух в альвеолах, наоборот, содержит много кислорода и меньше углекислого газа. Вследствие этого через стенки альвеол и капилляров происходит двусторонняя диффузия —. кислород переходит в кровь, а углекислый газ поступает из крови в альвеолы. В крови кислород проникает в эритроциты и соединяется с гемоглобином. Кровь, насыщенная кислородом, становится артериальной и по легочным венам поступает в левое предсердие.

Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.
Альвеолярный воздух по составу отличается от атмосферного. В альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе: 14,2—14,6% кислорода, 5,2—5,7% углекислого газа, 79,7—80% азота.

Парциальное давление углекислого газа в альвеолярном воздухе составляет 40 мм рт. ст., а его напряжение в притекающей к легким венозной крови — 48 мм рт. ст., в артериальной - 40.

Парциальное давление кислорода в воздухе, заполняющем альвеолы легких, около 100 мм рт. ст., а его напряжение в венозной крови, притекающей к легким, около 40 мм рт. ст., в артериальной - 102.

4. Транспорт газов (О2 и СО2) кровью. Гемоглобин, его формы. Факторы, влияющие на образование и диссоциацию оксигемоглобина. Содержание О2 и СО2 в артериальной и венозной крови. Кислородная емкость крови.

Транспорт газов кровью. В организме кислород и углекислый газ транспортируются кровью. Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин, и в таком виде доставляется к тканям. В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в так называемый восстановленный гемоглобин. Углекислый газ, образующийся в тканях, переходит в кровь и поступает в эритроциты. Затем часть углекислого газа соединяется с восстановленным гемоглобином, образуя так называемый карбгемоглобин, и в таком виде углекислый газ и доставляется к легким. Однако большая часть углекислого газа в эритроцитах при участии фермента карбоангидразы превращается в бикарбонаты, которые переходят в плазму и транспортируются к легким. В легочных капиллярах бикарбонаты при помощи специального фермента карбоангидразы распадаются и выделяется углекислый газ. Отщепляется углекислый газ и от гемоглобина. Углекислый газ переходит в альвеолярный воздух и с выдыхаемым воздухом удаляется во внешнюю среду.Следует знать, что более эффективно, чем углекислый газ с гемоглобином, связывается окись углерода известная как угарный газ. Образующийся в этом случае так называемый карбоксигемоглобин не способен связывать кислород.

Гемоглоби́н — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани
Формы:
Нв Р (примитивный) - у эмбриона на 7-12 неделе беременности
Нв F (фетальный) - с 12-ой недели до 1 года жизни ребенка
Нв А (взрослый) - с года и на всю жизнь

На диссоциацию оксигемоглобина влияют:
- Накопление углекислоты (взаимодействует с глобиновой частью Нb - снижение его сродства к кислороду)
- Накопление ионов водорода (протонов - снижение рН) - протоны также взаимодействуют с глобина - снижение сродства кислорода и Hb;
- повышение температуры

На образование:
- концентрация О2
- концентрация СО2

Венозная кровь (100мл):
- 14,2 (14%) кислорода
- 58% углекислого газа

Артериальная кровь (100мл):
- 19,3 (19-20%) кислорода
- 52% углекислого газа

В крови кислород соединяется с гемоглобином и образует непрочное соединение - оксигемоглобин. Насыщение крови кислородом зависит от количества гемоглобина в крови. Максимальное количество кислорода, которое может поглотить 100 мл крови, называют кислородной емкостью крови. Известно, что в 100 г крови человека содержится 14% гемоглобина. Каждый грамм гемоглобина может связать 1,34 мл О2. Значит, 100 мл крови могут перенести 1,34х14%=19 мл (или 19 объемных процентов). Это и есть кислородная емкость крови.

Можно рассчитать степень насыщения крови кислородом. Для этого нужно разделить содержание кислорода исследуемой крови на ее кислородную емкость.

5. Кривые диссоциации оксигемоглобина и их зависимость от концентрации водородных ионов и температуры.

 

Повышение температуры вызывает неспецифический сдвиг равновесия в реакции связывания кислорода с гемоглобином в сторону диссоциации (так же, как, например, при повышенной температуре лучше растворяется любая соль - равновесие сдвигается в сторону диссоциированных ионов)

СО2 и Н+, как и кислород, связываются с гемоглобином, однако не с железом гема, а с различными аминокислотными остатками белковой части - глобина. Присоединение Н+ к соответствующим центрам связывания вызывает снижение сродства гема к кислороду

6. Газообмен в тканях.
Обмен газов в тканях осуществляется в капиллярах. Через их тонкие стенки кислород поступает из крови в тканевую жидкость и затем в клетки, а углекислота из тканей переходит в кровь. Концентрация кислорода в крови больше, чем в клетках, поэтому он легко диффундирует в них.
Концентрация углекислого газа в тканях, где он собирается, выше, чем в крови. Поэтому он переходит в кровь, где связывается химическими соединениями плазмы и отчасти с гемоглобином, транспортируется кровью в легкие и выделяется в атмосферу.

7. Регуляция дыхания. Структуры ЦНС, обеспечивающие дыхательную периодику.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром, расположенным в продолговатом мозге.
В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга.

8. Рецепторы легких (растяжения, ирритантные, юкстаальвеолярные), их роль в саморегуляции дыхания.

Существуют три типа рецепторов легких

Легочные рецепторы растяжения
эти рецепторы залегают в гладких мышцах воздухоносных путей. Они реагируют на растяжение легких. Если легкие длительно удерживаются в раздутом состоянии, то активность рецепторов растяжения изменяется мало, что говорит об их слабой адаптируемости. Импульсация от этих рецепторов идет по крупным миелиновым волокнам блуждающих нервов.

Основной ответ на возбуждение легочных рецепторов растяжения — уменьшение частоты дыхания в результате увеличения времени выдоха. Эта реакция называется инфляционным (т. е. возникающим в ответ на раздувание) рефлексом Геринга — Брейера.

Ирритантные рецепторы

Ирритантные рецепторы реагируют на действие едких газов, табачного дыма, пыли и холодного воздуха. Полагают, что они располагаются между эпителиальными клетками дыхательных путей. Импульсы от этих рецепторов идут по миелиновым волокнам блуждающих нервов, а рефлекторный ответ заключается в сужении бронхов и гиперпноэ. Некоторые физиологи называют эти рецепторы «быстроадаптирующимися», так как для них характерна быстрая адаптация и, по-видимому, они не только реагируют на вредные для стенок дыхательных путей агенты, но и играют определенную роль в механорецепции. Возможно, возбуждение ирритантных рецепторов гистамином, выделяющимся при приступах бронхиальной астмы, в какой-то степени обусловливает характерный для этого состояния бронхоспазм.

J-рецепторы

J-рецепторы («юкстакапиллярные» рецепторы) называются так потому, что залегают, как считается, в альвеолярных стенках около капилляров. В пользу такого расположения говорит их очень быстрая реакция на введение химических веществ в легочные сосуды. Импульсы от этих рецепторов идут по медленным немиелинизированным волокнам блуждающих нервов, приводя к установлению частого поверхностного дыхания, хотя при сильном раздражении возможна полная его остановка. Есть данные о том, что J-рецепторы могут реагировать на переполнение кровью легочных капилляров и повышение объема интерстициальной жидкости стенок альвеол. Возможно, они играют определенную роль в возникновении одышки (т. е. ощущения затрудненного дыхания), наблюдающейся при левожелудочковой недостаточности и интерстициальной отеке легких.


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.026 с.