На связи — кора головного мозга — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

На связи — кора головного мозга

2019-08-07 153
На связи — кора головного мозга 0.00 из 5.00 0 оценок
Заказать работу

 

Сегодня у нашей исследовательской группы накопилось достаточно историй об успехах, чтобы утверждать, что наш локально-глобальный тест действительно выявляет наличие сознания. Тем не менее тест этот еще далеко не совершенен. У нас было слишком много ложных отрицательных результатов — тест не показывал наличия сознания у пациентов, которые позже выходили из комы и к которым возвращалось полноценное сознание. Мы немного выиграли за счет обработки наших данных посредством сложного алгоритма машинного обучения38. Этот инструмент напоминает Гугл и позволяет проверять мозг на наличие любых реакций на глобальную неожиданность, даже если эти реакции необычны и прежде нигде не встречались. И все-таки примерно у половины пациентов, которые находятся в состоянии минимального сознания или к которым вернулись коммуникативные способности, мы не смогли зафиксировать какую-либо реакцию на нестандартные последовательности.

Статистика называет это случаем высокоспецифичности при слабой чувствительности. Проще говоря, наш тест так же асимметричен, как тест Оуэна: если мы получаем положительный результат, то можем почти наверняка сказать, что у пациента сознание сохранилось; если же результат оказывается отрицательным, мы не можем сделать вывод о том, что сознание отсутствует. Объяснить эту низкую чувствительность можно несколькими возможными причинами. Не исключено, что наши записи ЭЭГ содержат слишком много шумов — в конце концов, не так-то легко получить четкий сигнал, когда пациент лежит на больничной койке в окружении всевозможных электронных приборов или не может стоять спокойно или смотреть в одну точку. Вполне вероятно, что некоторые наши пациенты находятся в сознании, но не могут понять, что от них требуется. Их мозг поражен так тяжело, что они не в силах сосчитать нарушения звука или заметить их — или даже просто сконцентрироваться на этих звуках более чем на несколько секунд.

Тем не менее психическая жизнь этих пациентов не прекращается. Если наша теория верна, это значит, что их мозг по-прежнему способен распространять глобальную информацию в коре на большие расстояния. Как же это отследить? В конце первого десятилетия XXI века Марселло Массимини из Университета Милана пришла одна хитроумная идея на сей счет39. В нашей лаборатории для выявления сознания использовался мониторинг проникновения сенсорного сигнала в мозг, а Массимини предложил использовать внутренний стимул. А давайте запустим электрическую активность прямо в коре головного мозга, подумал он. Это будет как импульсный сигнал локатора — интенсивный стимул проникнет в кору и в зрительный бугор, а сила и длительность порожденного им эха покажут нам, сообщаются ли между собой области, через которые он проходит. Если активность достигнет отдаленных областей и если сигнал долгое время будет блуждать туда-обратно, можно будет говорить о возможном наличии у пациента сознания. При этом, что примечательно, самому пациенту не придется даже обращать внимание на стимул или в чем-то разбираться. Пациент может даже не знать, что кто-то с помощью импульса проверяет состояние отдаленных участков коры его мозга.

Для реализации своей идеи Массимини воспользовался сложным сочетанием двух технологий: ТМС и ЭЭГ. Как уже говорилось в главе 4, при транскраниальной магнитной стимуляции кору головного мозга стимулируют с помощью магнитного потока, направляя разряд на помещенную возле головы катушку. ЭЭГ, как уже известно читателю, представляет собой старый добрый способ записи волн мозга. Фокус, произведенный Массимини, заключался в том, чтобы «пощупать импульсом» кору с помощью ТМС, а потом использовать ЭЭГ, чтобы записать распространение активности мозга, которая начнется в результате импульса. Для этого требовались особые усилители, которые быстро восстановятся после интенсивного тока, генерированного с помощью ТМС, и спустя всего несколько миллисекунд отобразят точную картину распространения активности.

В настоящее время метод Массимини дает потрясающие результаты. Поначалу Массимини исследовал с его помощью здоровых людей, находившихся в состоянии бодрствования, сна и под анестезией. В период отсутствия сознания импульс ТМС вызывал лишь краткую очаговую активность, которая прекращалась спустя примерно 200 миллисекунд. Когда же участник эксперимента находился в сознании или даже предавался мечтам, тот же самый импульс вызывал в мозгу сложную цепочку активности. Место подачи стимула, по-видимому, роли не играло: в какой бы точке он ни попал в кору, в мозгу сразу же начиналась сложная и длительная реакция, явственно свидетельствовавшая о наличии сознания40. Это наблюдение вполне согласуется с тем, что наблюдали мы с моей командой во время сенсорной стимуляции: если сигналы распространяются по охватывающей весь мозг сети более 300 миллисекунд, это говорит о наличии сознания.

Затем Массимини перешел к наиболее важной части эксперимента и испытал свою аппаратуру на пяти пациентах в вегетативном состоянии, пяти — в состоянии минимального сознания и двух — в псевдокоме41. Цифры невелики, но результат был стопроцентный: все находящиеся в сознании пациенты продемонстрировали длительную и сложную реакцию на поданный в кору импульс. За состоянием пяти пациентов в вегетативном состоянии следили в течение нескольких месяцев после эксперимента. В течение этого времени трое из них перешли в категорию минимального сознания и постепенно вернули себе часть коммуникативных возможностей. Это были те самые три пациента, у которых наблюдались сложные сигналы мозга. В полном соответствии с моделью глобального рабочего пространства, характер продвижения этих сигналов по префронтальной и височной коре служил особенно достоверным индикатором уровня сознания пациента.

 

Поймать спонтанную мысль

 

Так ли полезен тест Массимини, станет ли он стандартным клиническим средством для проверки наличия сознания у пациентов — покажет будущее. Пока что самое удивительное в этом тесте то, что он всегда срабатывает. Правда, он опять-таки требует сложной аппаратуры, а далеко не у каждой больницы имеется ЭЭГ-система высокой плотности, способная поглотить мощные сигналы, генерируемые транскраниальным магнитным стимулятором. Теоретически здесь должно быть гораздо более простое решение. Если гипотеза глобального рабочего пространства верна, тогда даже в темноте, в отсутствие какой-либо внешней стимуляции, находящийся в сознании человек продемонстрирует явственно различимый автограф церебральных коммуникаций через большие расстояния. Постоянный поток активности мозга должен охватить префронтальную и теменную доли и генерировать периоды синхронных колебаний в отдаленных уголках мозга. Эта активность должна сопровождаться повышенной электрической активностью, особенно на средних (бета) и высоких (гамма) частотах. При такой трансляции на большие расстояния должно потребляться большое количество энергии. Нельзя ли просто засечь эту энергию?

На самом деле нам давно уже известно, что, когда человек теряет сознание, скорость обмена веществ в тканях мозга падает — это можно измерить с помощью позитронно-эмиссионной томографии (ПЭТ). Сканер ПЭТ — это сложный детектор высокоэнергетических гамма-лучей, который можно использовать для того, чтобы измерить, сколько глюкозы (химического источника энергии) поглощается в той или иной части тела. Делается это так: пациенту вводят помеченные радионуклидом частицы глюкозы, а затем с помощью сканера отслеживают пики распада радиоактивного вещества. Пики возникают именно там, где мозг потребляет глюкозу. Результаты поражают: у здорового человека под воздействием анестезии или глубокого сна потребление глюкозы в коре головного мозга падает на 50 процентов. Аналогичное снижение потребления энергии характерно также для комы и для вегетативного состояния. В начале 1990-х команда Стивена Лори в Льеже получила поразительные изображения аномалий мозгового метаболизма, наблюдающихся у пациентов в вегетативном состоянии (рис. 32)42.

Рисунок 32. Бессознательному состоянию, сопряженному с медленным сном, анестезией или вегетативным состоянием, соответствует снижение скорости обмена веществ во фронтальной и теменной коре. Активность может снижаться и в других областях, однако именно в областях, составляющих глобальное нейронное рабочее пространство, потребление энергии при потере сознания резко падает, причем опыт можно воспроизвести

 

Следует заметить, что в разных областях мозга усвоение глюкозы и кислородный обмен веществ падают по-разному. Потеря сознания, по всей видимости, влечет за собой подавление активности билатеральных областей префронтальной и теменной коры, а также таких средних структур мозга, как поясная область и предклинье. Эти области почти полностью совпадают с нашей сетью глобального рабочего пространства и имеют наибольшее количество кортикальных проекций — еще одно подтверждение того, что эта система рабочего пространства особенно важна для сознательного опыта. На строение и обмен веществ в других областях сенсорной и моторной коры потеря сознания, даже полная, может никак не повлиять43. Так, если у пациента в вегетативном состоянии случайным образом меняется выражение лица, в передних моторных зонах его мозга при этом наблюдается обычная для таких случаев активность. За прошедшие двадцать лет был зафиксирован случай, когда пациент произносил случайные слова, делая это явно неосознанно и без какой-либо связи с происходящим вокруг. Нейронная активность и метаболизм наблюдались у него лишь в небольших изолированных областях коры в языковой зоне левого полушария. Конечно, случайной активности такого рода было недостаточно для достижения сознательного состояния — тут потребовалась бы более обширная сеть.

К сожалению, одного наличия процессов обмена веществ в мозгу мало, чтобы с уверенностью говорить о наличии или отсутствии остаточного сознания. У некоторых вегетативных пациентов сохраняется практически нормальный кортикальный метаболизм; по всей видимости, в их случае травма затрагивает лишь верхние структуры промежуточного мозга, но не кору. И наоборот (что еще важнее), у многих пациентов в вегетативном состоянии после частичного восстановления и перехода в состояние минимального сознания нормальный обмен веществ оказывается нарушен. Сравнивая изображения мозга до и после восстановления, мы можем видеть, что в областях рабочего пространства потребление энергии возросло, но ненамного. Возможно, обмен веществ не может восстановиться из-за необратимого повреждения коры. Но даже самые подробные изображения травм, полученные с помощью лучших аппаратов для МРТ, не дают полного ответа44 и не позволяют вычленить абсолютно надежные признаки наличия сознания. Одних лишь отображений обмена веществ или строения мозга недостаточно для того, чтобы точно зафиксировать лежащий в основе сознания нейронный обмен информацией.

Стремясь получить более совершенный детектор наличия остаточного сознания, мы с моими коллегами Жаном Реми Кингом, Джакобо Ситтом и Лайонелом Наккашем вернулись к идее использования элементарного ЭЭГ в качестве маркера кортикальной коммуникации45. Команда Наккаша сделала почти 200 записей с высокой плотностью, сняв данные с 256 электродов, следящих за электрической активностью мозга вегетативных пациентов, пациентов в состоянии минимального и полного сознания. Можно ли использовать эти данные для того, чтобы точно определить, какие объемы информации циркулируют в коре? Порывшись в научных работах, Ситт — гениальный физик и одновременно компьютерщик и психиатр — предложил великолепную идею. Он разработал программу для быстрого получения численного показателя под названием «взвешенный показатель символической трансинформации», который был разработан для оценки количества информации, которой обмениваются между собой два участка мозга46.

Когда в эту программу ввели данные наших пациентов, пациенты в вегетативном состоянии оказались выделены в совершенно отдельную от всех группу (рис. 33). По сравнению с пациентами, находящимися в сознании, у вегетатиков обнаружилось значительное снижение информационного обмена. Это особенно ярко проявилось, когда мы стали использовать для проведения анализа пары электродов, введенных на расстоянии минимум 7—8 сантиметров друг от друга, — как мы уже знаем, передача информации на большие расстояния является отличительным свойством наделенного сознанием мозга. С помощью еще одного направленного критерия мы обнаружили, что обмен информацией идет в двух направлениях: специализированные области в задней части мозга передавали информацию в универсальные области теменной и префронтальной коры и получали от них ответные сигналы.

Рисунок 33. Наличие информационного обмена на больших расстояниях в пределах коры — отличный показатель наличия сознания у пациентов с мозговыми нарушениями. Чтобы получить это изображение, мы произвели электроэнцефалографическое исследование и записали сигналы мозга с 256 электродов почти у 200 пациентов, находившихся как в сознании, так и в бессознательном состоянии. Для каждой пары электродов (на рисунке они отображены в виде дуги) мы вычислили математический показатель объема информационного обмена между соответствующими областями мозга. У пациентов в вегетативном состоянии наблюдался значительно более низкий объем информационного обмена, нежели у пациентов в сознании и контрольных субъектов. Это открытие вполне соответствует основному положению теории глобального рабочего пространства: важнейшей функцией сознания является информационный обмен. Дальнейшие исследования показали, что те немногие пациенты, которые, пребывая в вегетативном сознании, демонстрировали большие объемы информационного обмена, имели больше шансов прийти в сознание в течение нескольких дней или месяцев

 

На наличие у пациентов сознания указывали и другие проявлявшиеся на ЭЭГ характеристики47. Математический подсчет количества энергии различных частотных диапазонов показал вполне предсказуемое: что утрата сознания ведет к исчезновению высоких частот, появляющихся при нейронном кодировании и обработке информации; преобладать начинают крайне низкие частоты, характерные для состояния сна или анестезии48. Критерии синхронности в этих мозговых колебаниях подтверждают, что в состоянии сознания области коры, как правило, налаживают гармоничный информационный обмен.

Каждый из этих численных показателей поворачивает сознание новой стороной, мы наблюдаем за сознанием с разных ракурсов и получаем все новые и новые его образы. Чтобы объединить их в целостную картину, Жан Реми Кинг создал программу, которая почти автоматически определяла, какое сочетание критериев позволяет оптимально спрогнозировать ситуацию в каждом конкретном случае. Двадцать минут записи ЭЭГ (пациенту даже не задают вопросов) — и готов точный диагноз. Мы почти ни разу не перепутали вегетативного пациента с пациентом, наделенным сознанием. В большинстве случаев ошибка если и случалась, то заключалась в том, что пациента в состоянии минимального сознания относили к категории пациентов с вегетативным состоянием, причем мы даже не можем с уверенностью утверждать, что это была именно ошибка: за те двадцать минут, что длилось исследование, пациент в состоянии минимального сознания мог выйти из сознательного состояния. Вероятно, повтор теста в другой день помог бы дополнительно уточнить диагноз.

Ошибка могла быть и в другую сторону: наша программа изредка относила к категории минимального сознания пациентов, которых в результате клинического обследования относили к категории пребывающих в вегетативном состоянии. Но была ли это ошибка? Что, если эти пациенты парадоксальным образом выглядели так, будто находятся в вегетативном состоянии, а на самом деле сохраняли сознание и пребывали в псевдокоме? Посмотрев, чем кончилось дело для наших вегетативных пациентов через несколько месяцев после записи ЭЭГ, мы обнаружили весьма обнадеживающие результаты. В двух третях случаев наша программа согласилась с клиническим диагнозом вегетативного состояния — и из этих пациентов восстановились и перешли в категорию минимального сознания лишь 20 процентов. Что же до оставшейся трети, то у этих пациентов наша система обнаружила проблески сознания там, где клиницисты их не видели, — и из этих пациентов в последующие несколько месяцев 50 процентов восстановились до того, как наличие у них сознания было зафиксировано врачами.

Из такой разницы в прогнозах можно сделать очень важные выводы. Получается, что с помощью автоматизированных средств оценки мозга мы можем выявлять признаки сознания задолго до того, как они видимым образом проявятся в поведении. Автографы сознания, которые мы выявили с помощью нашей теории, позволяют сделать вывод более точный, чем у опытного врача-клинициста. Молодая наука о сознании пожинает первые плоды своих трудов.

 

О клиническом вмешательстве

 

Придумай,

Как исцелить недужное сознанье,

Как выполоть из памяти печаль,

Как письмена тоски стереть в мозгу

И снадобьем ей дать забвенье, сняв

С ее груди отягощенной тяжесть,

Налегшую на сердце.

Шекспир. Макбет (пер. Ю. Корнеева)

 

Но заметить проблеск сознания — это еще даже не полдела. Пациенты и их семьи могли бы сказать врачам словами из Шекспира: «Придумай, как исцелить недужное сознанье». В силах ли мы вернуть сознание пациентам, пребывающим в коме или в вегетативном состоянии? Иногда их психика восстанавливается внезапно, много лет спустя после травмы. Можем ли мы ускорить процесс восстановления?

Когда родственники больных задают этот вопрос, медики обычно дают пессимистический ответ. Если по прошествии целого года пациент так и не приходит в сознание, ему ставят диагноз «перманентное вегетативное состояние». Подтекст ясен: как ни стимулируй процесс, на улучшение шансов остается совсем немного. И для многих пациентов это печальная истина.

Однако в 2007 году Николас Шифф и Джозеф Джиачино опубликовали в естественно-научном журнале Nature весьма примечательную статью, в которой предлагали пересмотреть бытующее мнение на сей счет49. Они продемонстрировали первую в истории методику, позволявшую медленно возвращать пациентов с минимальным сознанием в более стабильное состояние. Предложенный ими метод заключался в следующем: в мозг вводили длинные электроды и через них стимулировали наиболее важную область, так называемый центральный зрительный бугор и окружающие его интраламинарные ядра.

Благодаря исследованиям, проведенным в 1940-е годы пионерами этой области Джузеппе Моруччи и Хорасом Магуном, нам известно, что эти области представляют собой важные узловые пункты высшей системы, управляющей всем уровнем активного внимания в коре50. Центральные таламические ядра содержат массу плотно расположенных проекционных нейронов, содержащих особый белок (кальций-связывающий протеин). Мы знаем, что эти нейроны передают информацию в самые отдаленные уголки мозга, в частности в передние доли. Интересно, что их аксоны избирательно нацелены на пирамидальные нейроны верхних слоев коры, в частности на нейроны дальней передачи, лежащие в основе глобального нейронного рабочего пространства. У животных активация центрального зрительного бугра может влиять на активность мозга в целом, стимулировать моторную деятельность и резко усиливать способность к обучению51.

В мозгу здорового человека активностью центрального зрительного бугра заправляют префронтальная и поясная области коры. По-видимому, благодаря этой петле обратной связи мы способны оперативно регулировать возбуждение коры в зависимости от стоящих перед нами задач: задача, требующая внимания, включает возбуждение, и рабочая мощность мозга подскакивает52. Однако если мозг серьезно поврежден, глобальное снижение общего уровня циркулирующей нейронной активности может разрушить эту важнейшую петлю, от которой зависит степень возбуждения. Поэтому Шифф и Джиачино предсказали, что стимулирование центрального зрительного бугра может вновь «пробудить» мозг, восстановив через воздействие извне тот уровень возбуждения, который мозг пациента не в состоянии вызвать сам.

Как мы уже говорили, активное внимание и доступ в сознательный опыт — это разные вещи. У пациентов в вегетативном состоянии нередки случаи частичного сохранения системы активного внимания: они просыпаются по утрам и открывают глаза, но уже не могут запустить кору мозга работать в режиме сознания. Большинству пациентов в устойчивом вегетативном состоянии стимуляция зрительного бугра не помогает. У Терри Шайво такой стимулятор стоял, но никаких длительных улучшений не наблюдалось — возможно, потому, что кора ее мозга и в особенности находящееся под ней белое вещество были серьезно повреждены. В некоторых случаях стимулятор вроде бы срабатывал, но и здесь мы не можем исключить версию спонтанного выздоровления.

Будучи прекрасно осведомлены о столь мрачном положении дел, Шифф и Джиачино решили не сдаваться и составили план, который мог бы повысить их шансы на успех. Первым делом они нацелились на центральное латеральное ядро зрительного бугра, участвующее в петле прямой связи с префронтальной корой. Во-вторых, они выбрали пациента, которому, по их мнению, могли помочь, поскольку он уже находился на грани прихода в сознание. Вспомним, что Джозеф Джиачино сам помогал создать определение состояния минимального сознания: у пациентов в этом состоянии наблюдаются мимолетные признаки сознательной обработки данных и попытки преднамеренной коммуникации, однако они не способны демонстрировать эти свойства систематически и произвольно. Команда Шиффа отыскала пациента в подобном состоянии — нейровзуализация показала, что кора головного мозга у него практически не пострадала. Он пребывал в стабильном состоянии минимального сознания уже много лет, однако оба полушария реагировали активностью на речь. Правда, общий уровень обмена веществ в коре головного мозга у него был значительно снижен, то есть возбуждение было практически неконтролируемым. Не могла ли стимуляция зрительного бугра стать тем недостающим толчком, который вытолкнул бы пациента в стабильно сознательное состояние?

Шифф и Джиачино работали осторожно, поэтапно. Перед имплантацией электродов они несколько месяцев тщательно следили за состоянием пациента, снова и снова тестируя его (по шкале посткоматозного восстановления), и так до тех пор, пока не получили точное представление о его состоянии и возможных колебаниях этого состояния. Важно отмстить, что в некоторых случаях тест давал промежуточные результаты: пациент демонстрировал несколько признаков произвольной деятельности и даже иногда произносил слово, однако происходили такие случаи без какой-либо системы. Это означало, что пациент пребывает в состоянии минимального сознания и до здорового человека ему еще далеко.

Опираясь на проделанные наблюдения, Шифф и Джиачино принялись вводить в мозг пациента электроды. Во время операции они аккуратно и точно направили два длинных провода через кору левого и правого полушарий прямо в центральный зрительный бугор. Сорок восемь часов спустя на электроды подали ток. Результат последовал поразительный: пациент, шесть лет пребывавший в состоянии минимального сознания, открыл глаза, сердце его забилось быстрее, он спонтанно обернулся, услышав голоса. Правда, реакции его были ограничены: когда его попросили сказать, как называется тот или иной предмет, он говорил «неразборчиво, и все сказанное сводилось к эпизодам непонятного бормотания»53. Как только стимуляция была прекращена, все эти признаки тут же исчезли.

Чтобы пациент вновь вернулся в исходное состояние, исследователи в течение двух месяцев воздерживались от стимуляции. За это время никаких улучшений в состоянии пациента не произошло. Каждые два месяца проводилось двойное слепое исследование: стимуляцию либо включали, либо нет, случайным образом. Состояние пациента резко улучшалось. Показатели возбуждения, коммуникации, моторного контроля и способности называть предметы при включенном стимуляторе увеличивались. Что еще важнее, после выключения стимулятора эти показатели падали совсем ненамного, отнюдь не до исходного состояния. Эффект медленно накапливался, и шесть месяцев спустя пациент уже способен был самостоятельно поднести ко рту чашку и напиться. Члены его семьи отметили значительное улучшение, произошедшее в области социальных коммуникаций. Пациент все еще страдал серьезными нарушениями, однако уже мог активно влиять на собственную жизнь и даже обсуждать применяемые методы лечения.

История этого успеха вселяет большие надежды. Повышая уровень кортикального возбуждения и таким образом выводя нейронную активность на уровень, близкий к нормальному, глубокая стимуляция может способствовать восстановлению автономного функционирования мозга.

Пластичность мозга и возможность спонтанного восстановления сохраняется даже у пациентов, долгое время находившихся в вегетативном состоянии или в состоянии минимального сознания. Один человек пребывал в состоянии минимального сознания девятнадцать лет, после чего к нему внезапно вернулись речь и память. Изображения его мозга, полученные с помощью метода диффузионно-тензорной томографии, показали, что у него вновь отросли некоторые длинные связи в мозгу54. У другого пациента в вегетативном состоянии была нарушена коммуникация между фронтальной корой и зрительным бугром, однако после его спонтанного выздоровления связь восстановилась55.

Мы не предполагаем, что выздороветь таким образом может каждый пациент, но можно ли хотя бы выяснить, почему одни выздоравливают, а другие — нет? Понятно, что, если было разрушено слишком большое число префронтальных нейронов, восстановить их не удастся никакой стимуляцией. Однако в некоторых случаях нейроны остаются нетронутыми, лишаясь при этом множества связей. А бывает, что все дело оказывается в самоподдерживающейся динамике мозговых цепочек: связи есть, но циркулирующей информации недостаточно для того, чтобы поддерживать постоянный уровень активности, и мозг отключается. Если цепочка не пострадала и ее удастся включить, выздоровление пациента с подобной проблемой может быть удивительно быстрым.

Но как же нам перевести кортикальный выключатель в положение «вкл»? Первым кандидатом на выполнение этой задачи являются фармакологические средства, воздействующие на дофаминовые цепочки мозга. Дофамин — это нейротрансмиттер, активно присутствующий в первую очередь в цепочках вознаграждения мозга. Нейроны, использующие дофамин, отправляют множество модулирующих сообщений в префронтальную кору и в глубоко лежащие серые ядра, под контролем которых находится волевая деятельность; возможно, таким образом они восстанавливают нормальный уровень возбуждения. Трое пациентов, находившихся в устойчивом вегетативном состоянии, внезапно пришли в себя после введения им препарата под названием «леводопа» — предшественника дофамина. Как правило, леводопа применяется при лечении болезни Паркинсона56. Еще одним стимулятором дофаминовой системы является амантадин, который в ходе контролируемых клинических тестов продемонстрировал способность слегка ускорять процесс восстановления пациентов в вегетативном состоянии и в состоянии минимального сознания57.

Другие зафиксированные случаи выглядят еще более странно. Самый парадоксальный эффект дает амбиен — это снотворное, как ни странно, может способствовать восстановлению сознания. Медики наблюдали пациента с неврологическим синдромом акинетического мутизма, то есть с полной потерей речи и возможности двигаться в течение многих месяцев. Чтобы пациенту лучше спалось, ему дали таблетку амбиена, распространенного снотворного, — и пациент вдруг пришел в себя, начал двигаться и заговорил58. Был и другой случай: женщина, перенесшая инсульт левого полушария и лишившаяся речи, могла произнести разве что отдельные слоги невпопад. Ей трудно было заснуть, поэтому врач прописал ей амбиен. Впервые приняв лекарство, женщина вдруг на несколько часов обрела возможность говорить. Она отвечала на вопросы, считала и даже могла называть разные предметы. Затем она уснула, и на следующее утро, конечно, проснулась с афазией. Случившееся повторялось каждый вечер после того, когда родные давали ей снотворное59. Женщина не только не засыпала — снотворное парадоксальным образом будило уснувшие языковые цепочки в коре.

Мы еще только начинаем понимать, в чем причина этого феномена. По всей видимости, он связан с множественными петлями, увязывающими сети рабочего пространства коры, зрительный бугор и два базальных ядра (стриатум и паллидум). При помощи этих петель кора опосредованно возбуждает сама себя, поскольку активация идет по кругу, от фронтальной коры в стриатум, паллидум, зрительный бугор и обратно в кору. Тем не менее связь между этими участками в двух случаях построена не на возбуждении, а на подавлении: стриатум оказывает угнетающее действие на паллидум, а паллидум, в свою очередь, аналогичным образом воздействует на зрительный бугор. Когда мозг лишается притока кислорода, в числе первых от этого страдают блокирующие клетки стриатума. В результате угнетения паллидума почти не происходит, его активность разворачивается без помех, отрубает зрительный бугор и кору и лишает их возможности вести деятельность, способствующую появлению сознания.

При всем при том существующие связи по большей части хоть и угнетены, но остаются в целости. Если мы разорвем сложившийся порочный круг, то схема включится в работу снова. Сделать это можно множеством способов. Можно ввести глубоко в зрительный бугор электрод, который будет противодействовать излишнему угнетению нейронов бугра, и они включатся снова. Можно использовать дофамин или амантадин — эти препараты возбуждают кору напрямую либо через оставшиеся нейроны стриатума. Можно, наконец, подавить угнетающее воздействие с помощью таких препаратов, как амбиен: он связывается с большим количеством ингибиторных рецепторов паллидума и заставляет излишне возбужденные подавляющие клетки отключаться, в результате чего кора головного мозга и зрительный бугор вновь обретают возможность действовать. Все это, конечно, теории, но с их помощью мы можем объяснить, почему в итоге все препараты подобного толка в конце концов действуют одинаково и возвращают кортикальную активность на более-менее нормальный уровень60.

Впрочем, все это возможно лишь в случае, если кора головного мозга не слишком пострадала. Хорошо, если префронтальная кора при нейровизуализации выглядит неповрежденной, однако уровень обмена веществ в ней значительно ниже нормы. Это значит, что кора, возможно, просто была отключена, и ее вполне можно разбудить снова. Включившись, она медленно вернется в прежнее саморегулируемое состояние. В норме многие синапсы мозга отличаются пластичностью и могут наращивать влияние с тем, чтобы содействовать стабилизации активных совокупностей нейронов. Благодаря подобной пластичности мозга связи, возникающие в рабочем пространстве пациента, могут постепенно крепнуть, и периоды сознательной деятельности при этом будут понемногу увеличиваться.

Впрочем, мы можем вообразить возможные в будущем способы лечения даже для тех, у кого пострадали сами цепочки коры головного мозга. Если гипотеза рабочего пространства верна, сознание — это не более чем гибкая циркуляция информации в плотном операционном поле нейронов коры. Нельзя ли тогда предположить, что некоторые узлы и соединения в этом поле можно заменить внешними петлями? Так, интерфейсы «мозг — компьютер», а особенно те из них, которые основаны на работе с имплантатами, потенциально способны восстанавливать дальние связи в мозгу. Вскоре мы сможем получать спонтанные сигналы мозга в префронтальной или премоторной коре и перенаправлять их в другие удаленные области — как напрямую, в виде электрических разрядов, так и более простым образом, перекодируя их в зрительные или слуховые сигналы. Такого рода сенсорные заменители мы используем уже и сегодня, чтобы научить слепых «видеть», — для этого их учат распознавать звуковые сигналы, с помощью которых кодируется изображение с видеокамеры61. Построенные по тому же принципу сенсорные заменители могут вновь закольцевать мозг на самого себя и восстановить более плотную внутреннюю коммуникацию. Возможно, благодаря более плотным петлям мозг сможет возбуждать себя сам достаточно сильно, чтобы поддерживать должный уровень активности и сохранять сознание.

Не слишком ли мы самонадеянны? Время покажет. Одно можно сказать наверняка: интерес к коме и вегетативному состоянию вновь пробуждается и, будучи подкреплен надежной теорией сознания как порождения нейронных цепочек, повлечет за собой крупные прорывы в медицине. Революция в области лечения нарушений сознания уже совсем не за горами.

 

 

Будущее сознания

 

Нарождающейся науке о сознании предстоит преодолеть немало трудностей. Сможем ли мы точно определить момент зарождения сознания у новорожденного младенца? Сможем ли узнать, сознают ли происходящее вокруг себя обезьяна, собака, дельфин? Сможем ли решить загадку самосознания — удивительной способности думать о том, что мы думаем? Уникален ли в этом отношении человеческий мозг? Существуют ли в человеческом мозгу характерные только для него цепочки, и если да, то можно ли объяснить их дисфункцией такое чисто человеческое заболевание, как шизофрения? И наконец, сможем ли мы, проанализировав эти цепочки, продублировать их на компьютере и создать таким образом искусственный интеллект?  

 

Не по вкусу мне как-то, чтоб наука совала нос в мои дела, — какое ее дело? Наука уже подмяла под себя добрую долю всего вокруг — не хватит ли? Так ли уж ей нужно добраться и до неосязаемого, невидимого, сокровенного нашего «я»?

Дэвид Лодж. Думают… (2001)

 

 

По сути, чем величественнее наука, тем сильнее ощущение тайны.

Владимир Набоков. Strong Opinions (1973)

 

Итак, черный ящик сознания открыт. Используя разнообразные экспериментальные парадигмы, мы научились делать видимыми или невидимыми одни и те же изображения, а затем фиксировать рисунок нейронной активности, возникающий лишь при доступе в сознательное восприятие. В том, как мозг обрабатывает видимые и невидимые изображения, мы разобрались куда лучше, чем предполагали первоначально. Мы отыскали множество электрофизиологических автографов, свидетельствующих об активации сознания. Эти автографы сознания оказались настолько надежны, что теперь их используют в больницах для поиска остаточного сознания у пациентов с серьезными травмами мозга.

Все это, конечно, только начало. На многие вопросы у нас по-прежнему нет ответов. В этой, последней главе я хочу рассказать о будущем исследований в области сознания, как я его вижу, — о тех интереснейших вопросах, над которыми нейробиологам предстоит трудиться еще много-много лет.

Некоторые эти вопросы можно считать чисто эмпирическими, и мы имеем уже некоторое представление о том, каким может быть ответ. Вот, например, когда возникает сознание — как в процессе развития отдельного человека, так и в ходе эволюции? Есть ли сознание у новорожденного? А у недоношенного младенца? А у еще неродившегося? Есть ли у обезьян, мышей и птиц рабочее пространство, подобное нашему?

Некоторые проблемы граничат с философией, однако я твердо убежден, что в конце концов и на них будут даны эмпирические ответы — нужно лишь понять, с какой стороны их следует атаковать экспериментами. Например, что такое самосознание? Ведь в человеческом разуме явно есть какое-то особен<


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.067 с.