Механизм сокращения волокна. — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Механизм сокращения волокна.

2017-05-13 490
Механизм сокращения волокна. 0.00 из 5.00 0 оценок
Заказать работу

Чередование светлых и темных полос в миофибрильной нити определяется упорядоченным расположением по длине миофибриллы толстых нитей белка миозина и тонких нитей белка актина; толстые нити содержатся только в темных участках (А-диск) (рис.3), светлые участки (I-диск) не содержат толстых нитей, в середине I-диска находится Z-линия к ней крепятся тонкие нити актина. Участок миофибриллы состоящий из А-диска (темной полосы) и двух половинок I-дисков (светлых полос) называют саркомером. Сокращение длины саркомера происходит путем втягивания тонких нитей актина между толстыми нитями миозина. Скольжение нитей актина вдоль нитей миозина происходит благодаря наличию у нитей миозина боковых ответвлений, называемых мостиками. Головка миозинового мостика сцепляется с актином и изменяет угол наклона к оси нити, тем самым как бы продвигая нить миозина и актина относительно друг друга, затем отцепляется, сцепляется вновь и вновь совершает движение. Перемещение миозиновых мостиков можно сравнить с гребками весел на галерах. Как перемещение галеры в воде происходит благодаря движению весел, так и скольжение нитей происходит благодаря гребковым движениям мостиков, существенное отличие состоит лишь в том, что движение мостиков асинхронно.


Рис.3

Тонкая нить представляет из себя две спирально скрученные нити белка актина. В канавках спиральной цепочки залегает двойная цепочка другого белка - тропомиозина. В расслабленном состоянии мостики миозина не имеют возможности связаться с актином, так как места сцепления блокированы тропомиозином. При поступлении по аксону двигательного мотонейрона нервного импульса клеточная мембрана меняет полярность заряда, и из специальных терминальных цистерн, расположенных вокруг каждой миофибриллы вдоль всей ее длины, в саркоплазму выбрасываются ионы кальция (Са++) (рис.4).


Рис.4

Под воздействием Са++ нить тропомиозина входит глубже в канавку и освобождает места для сцепления миозина с актином, мостики начинают цикл гребков. Сразу после высвобождения Са++ из терминальных цистерн он начинает закачиваться обратно, концентрация Са++ в саркоплазме падает, тропомиозин выдвигается из канавки и блокирует места сцепления мостиков - волокно расслабляется. Новый импульс опять выбрасывает Са++ в саркоплазму и все повторяется. При достаточной частоте импульсации (не менее 20 Гц) отдельные сокращения почти полностью сливаются, то есть достигается состояние устойчивого сокращения, называемое тетаническим сокращением или гладким тетанусом.

Энергетика мышцы.

Естественно, что для движения мостика требуется энергия. Как я уже упоминал ранее, универсальным источником энергии в живом организме является молекула АТФ. Под действием фермента АТФазы АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н3РО4), и превращается в АДФ, при этом высвобождается энергия.

АТФ + H2O = АДФ + H3PO4 + энергия.

Головка миозинового мостика при контакте с актином обладает АТФазной активностью и соответственно возможностью расщеплять АТФ и получать энергию, необходимую для движения.

Запас молекул АТФ в мышце ограничен, поэтому расход энергии при работе мышцы требует постоянного его восполнения. Мышца имеет три источника воспроизводства энергии: расщепление креатинфосфата; гликолиз; окисление органических веществ в митохондриях.

Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.

АДФ + креатинфосфат = АТФ + креатин.

Эта реакция получила название - реакции Ломана. Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других более мощных источников - гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Гликолиз - процесс распада одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для "зарядки" двух молекул АТФ, протекает в саркоплазме под воздействием 10 специальных ферментов.

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H6O3 + 2АТФ + 2H2O.

Гликолиз протекает без потребления кислорода (такие процессы называются анаэробными) и способен быстро восстанавливать запасы АТФ в мышце.

Окисление протекает в митохондриях под воздействием специальных ферментов и требует затрат кислорода, а соответственно и времени на его доставку. Такие процессы называются аэробными. Окисление происходит в несколько этапов, сначала идет гликолиз (см. выше), но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле Кребса до углекислого газа СО2 и воды Н2О и дают энергию для производства еще 36 молекул АТФ. Суммарное уравнение реакции окисления глюкозы выглядит так:

C6H12O6 + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H(2)О + 38АТФ.

Итого распад глюкозы по аэробному пути дает энергию для восстановления 38 молекул АТФ. То есть окисление в 19 раз эффективнее гликолиза.

Типы мышечных волокон.

Скелетные мышцы и образующие их мышечные волокна различаются по множеству параметров: скорости сокращения, утомляемости, диаметру, цвету и т.д. Традиционно выделяют красные и белые, медленные и быстрые, гликолитические и окислительные волокна.

Скорость сокращения мышечного волокна определяются типом миозина. Изоформа миозина, обеспечивающая высокую скорость сокращения, - быстрый миозин характеризуется высокой активностью АТФазы, а соответственно и скоростью расхода АТФ. Изоформа миозина с меньшей скоростью сокращения - медленный миозин, характеризуется меньшей активностью АТФазы. Волокна, с высокой активностью АТФазы и скоростью расхода АТФ, принято называть быстрыми волокнами, волокна, характеризующиеся низкой активностью АТФазы и меньшей скоростью расхода АТФ, - медленными волокнами.

Для восполнения затрат энергией мышечные волокна используют окислительный либо гликолитический путь образования АТФ.

Окислительные, или красные, мышечные волокна небольшого диаметра окружены массой капилляров и содержат много белка миоглобина (именно наличие этого белка придает волокнам красный цвет). Многочисленные митохондрии красных волокон имеют высокий уровень активности окислительных ферментов. Мощная сеть капилляров необходима для доставки с кровью большого количества кислорода, а миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям. Энергию красные волокна получают путем окисления в митохондриях углеводов и жирных кислот.

Гликолитические, или белые, мышечные волокна имеют больший диаметр, в их саркоплазме содержится значительное количество гранул гликогена, митохондрии не многочисленны, активность окислительных ферментов значительно уступает активности гликолитических. Гликоген, его еще принято называть "животным крахмалом", - сложный полисахорид с высокой молекулярной массой служит резервным питательным веществом белого волокна. Гликоген распадается до глюкозы, которая, служит топливом при гликолизе.

Быстрые волокна, обладающие высокой активностью АТФазы и соответственно скоростью расхода энергии, требуют высокой скорости воспроизводства АТФ, обеспечить которую может только гликолиз, так как, в отличие от окисления, он протекает непосредственно в саркоплазме и не требует времени на доставку кислорода к митохондриям и доставку энергии от них к миофибриллам. Поэтому быстрые волокна предпочитают гликолитический путь воспроизводства АТФ и соответственно относятся к белым волокнам. За высокую скорость получения энергии белые волокна платят быстрой утомляемостью, так как гликолиз, как видно из уравнения реакции ведет к образованию молочной кислоты, накопление которой повышает кислотность среды и вызывает усталость мышцы и в конечном итоге останавливает ее работу.

Медленные волокна, характеризующиеся низкой активностью АТФазы, не требуют столь быстрого восполнения запасов АТФ и для обеспечения потребности в энергии используют путь окисления, то есть относятся к красным волокнам. Благодаря этому медленные волокна являются низко утомляемыми и способны поддерживать относительно небольшое, но длительное напряжение.

Существует и промежуточный тип волокон с высокой АТФазной активностью, и окислительно-гликолитическим путем воспроизводства АТФ.

Тип мышечного волокна зависит от мотонейрона его иннервирующего. Все волокна одного мотонейрона принадлежат к одному типу. Интересный факт - при подключении к быстрому волокну аксона медленного мотонейрона и наоборот, волокно перерождается, меняя свой тип. До недавнего времени существовало две точки зрения на зависимость типа волокна от типа мотонейрона, одни исследователи полагали, что свойства волокна определяются частотой импульсации мотонейрона, другие, что эффект влияния на тип волокна определяется гормоноподобными веществами поступающими из нерва (эти вещества до настоящего времени не выделены). Исследования последних лет показывают, что обе точки зрения имеют право на существование, воздействие мотонейрона, на волокно осуществляется обоими способами.


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.