Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Длина отрезка и ее измерение.

2017-05-18 2753
Длина отрезка и ее измерение. 4.67 из 5.00 3 оценки
Заказать работу

Вверх
Содержание
Поиск

Длина отрезка и ее измерение.

  • Свойства измерения отрезков

Измерить отрезок – значит найти его длину. Длина отрезка – это расстояние между его концами.

Измерение отрезков производится путём сравнения данного отрезка с другим отрезком, принятым за единицу измерения. Отрезок, принятый за единицу измерения, называется единичным отрезком.

Если за единичный отрезок принят сантиметр, то для определения длины данного отрезка надо узнать, сколько раз в данном отрезке помещается сантиметр. В этом случае измерение удобно производить с помощью сантиметровой линейки.

Начертим отрезок AB и измерим его длину. Приложим шкалу сантиметровой линейки к отрезку AB так, чтобы её нулевая точка (0) совпала с точкой A:

Если при этом окажется, что точка B совпадает с некоторым делением шкалы – например, 5, то говорят: длина отрезка AB равна 5 см, и пишут: AB = 5 см.

Свойства измерения отрезков

Когда точка делит отрезок на две части (на два отрезка), длина всего отрезка равна сумме длин этих двух отрезков.

Рассмотрим отрезок AB:

Точка C делит его на два отрезка: AC и CB. Мы видим, что AC = 3 см, CB = 4 см и AB = 7 см. Таким образом, AC + CB = AB.

Любой отрезок имеет определённую длину, большую нуля.

Величина угла и её измерение

Величиной угла называется положительная величина, определенная для каждого угла так, что: 1) равные углы имеют равные величины; 2) если угол состоит из двух углов, то его величина равна сумме величин его частей.

Эти свойства лежат в основе измерения величины угла. Оно аналогично измерению длины отрезка и состоит в сравнении измеряемой величины угла с величиной угла, принятой за единицу. Единичный угол, а если нужно и его доли, откладываются на угле, величина кото­рого измеряется. В результате получается численное значение величины угла или мера величины угла при данной единице измерения.

Число, которое получается в результате измерения величины угла, должно удовлетворять ряду требований - они аналогичны требованиям, предъявляемым к числовому значению длины отрезка.

На практике за единицу величины угла принимают градус - часть прямого угла. Один градус записывают так: 1°. Величина прямого угла равна 90°, величина развернутого - 180°.

Градус делится на 60 минут, а минута на 60 секунд. Одну минуту обозначают 1', одну секунду – 1''. Так, если мера величины угла равна 5 градусам 3 минутам и 12 секундам, то пишут 5°3'12". Если нужна большая точность в измерении величин углов, используют и доли секунды. Заметим, что часто вместо «величина угла» говорят «угол». Например, вместо «величина угла равна 45 градусам» говорят, что «угол равен 45 градусам».

На практике величины углов измеряют с помощью транспортира. Для более точных измерений пользуются и другими приборами.

Площадь многоугольника.

Площадь произвольной плоской фигуры и её измерение.

Формула Герона

S = √p(p - a)(p - b)(p - c)

 

3. Формула площади треугольника по двум сторонам и углу между ними
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

S =   a · b · sin γ
 

4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

S = a · b · с
4R

5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

S = p · r

 

Формулы площади квадрата

1. Формула площади квадрата по длине стороны
Площадь квадрата равна квадрату длины его стороны.

S = a2

 

2. Формула площади квадрата по длине диагонали
Площадь квадрата равна половине квадрата длины его диагонали.

S =   d2
 

 

Формулы площади ромба

1. Формула площади ромба по длине стороны и высоте
S = a · h

 

2. Формула площади ромба по длине стороны и углу
S = a2 · sin α

 

3. Формула площади ромба по длинам его диагоналей

 

S =   d1 · d2
 

1. Формула Герона для трапеции

S = a + b √(p - a)(p - b)(p - a - c)(p - a - d)
|a - b|

 

2. Формула площади трапеции по длине основ и высоте
Площадь трапеции равна произведению полусуммы ее оснований на высоту

S =   (a + b) · h
 
     
           

 

Формулы площади круга

Формула площади круга через радиус
S = π r2


Площадь круга

S =   π d2
 

Длина отрезка и ее измерение.

  • Свойства измерения отрезков

Измерить отрезок – значит найти его длину. Длина отрезка – это расстояние между его концами.

Измерение отрезков производится путём сравнения данного отрезка с другим отрезком, принятым за единицу измерения. Отрезок, принятый за единицу измерения, называется единичным отрезком.

Если за единичный отрезок принят сантиметр, то для определения длины данного отрезка надо узнать, сколько раз в данном отрезке помещается сантиметр. В этом случае измерение удобно производить с помощью сантиметровой линейки.

Начертим отрезок AB и измерим его длину. Приложим шкалу сантиметровой линейки к отрезку AB так, чтобы её нулевая точка (0) совпала с точкой A:

Если при этом окажется, что точка B совпадает с некоторым делением шкалы – например, 5, то говорят: длина отрезка AB равна 5 см, и пишут: AB = 5 см.

Свойства измерения отрезков

Когда точка делит отрезок на две части (на два отрезка), длина всего отрезка равна сумме длин этих двух отрезков.

Рассмотрим отрезок AB:

Точка C делит его на два отрезка: AC и CB. Мы видим, что AC = 3 см, CB = 4 см и AB = 7 см. Таким образом, AC + CB = AB.


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.