Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Топ:
Комплексной системы оценки состояния охраны труда на производственном объекте (КСОТ-П): Цели и задачи Комплексной системы оценки состояния охраны труда и определению факторов рисков по охране труда...
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного хозяйства...
Интересное:
Что нужно делать при лейкемии: Прежде всего, необходимо выяснить, не страдаете ли вы каким-либо душевным недугом...
Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны...
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Дисциплины:
2017-05-18 | 2753 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Длина отрезка и ее измерение.
Измерить отрезок – значит найти его длину. Длина отрезка – это расстояние между его концами.
Измерение отрезков производится путём сравнения данного отрезка с другим отрезком, принятым за единицу измерения. Отрезок, принятый за единицу измерения, называется единичным отрезком.
Если за единичный отрезок принят сантиметр, то для определения длины данного отрезка надо узнать, сколько раз в данном отрезке помещается сантиметр. В этом случае измерение удобно производить с помощью сантиметровой линейки.
Начертим отрезок AB и измерим его длину. Приложим шкалу сантиметровой линейки к отрезку AB так, чтобы её нулевая точка (0) совпала с точкой A:
Если при этом окажется, что точка B совпадает с некоторым делением шкалы – например, 5, то говорят: длина отрезка AB равна 5 см, и пишут: AB = 5 см.
Свойства измерения отрезков
Когда точка делит отрезок на две части (на два отрезка), длина всего отрезка равна сумме длин этих двух отрезков.
Рассмотрим отрезок AB:
Точка C делит его на два отрезка: AC и CB. Мы видим, что AC = 3 см, CB = 4 см и AB = 7 см. Таким образом, AC + CB = AB.
Любой отрезок имеет определённую длину, большую нуля.
Величина угла и её измерение
Величиной угла называется положительная величина, определенная для каждого угла так, что: 1) равные углы имеют равные величины; 2) если угол состоит из двух углов, то его величина равна сумме величин его частей.
Эти свойства лежат в основе измерения величины угла. Оно аналогично измерению длины отрезка и состоит в сравнении измеряемой величины угла с величиной угла, принятой за единицу. Единичный угол, а если нужно и его доли, откладываются на угле, величина которого измеряется. В результате получается численное значение величины угла или мера величины угла при данной единице измерения.
|
Число, которое получается в результате измерения величины угла, должно удовлетворять ряду требований - они аналогичны требованиям, предъявляемым к числовому значению длины отрезка.
На практике за единицу величины угла принимают градус - часть прямого угла. Один градус записывают так: 1°. Величина прямого угла равна 90°, величина развернутого - 180°.
Градус делится на 60 минут, а минута на 60 секунд. Одну минуту обозначают 1', одну секунду – 1''. Так, если мера величины угла равна 5 градусам 3 минутам и 12 секундам, то пишут 5°3'12". Если нужна большая точность в измерении величин углов, используют и доли секунды. Заметим, что часто вместо «величина угла» говорят «угол». Например, вместо «величина угла равна 45 градусам» говорят, что «угол равен 45 градусам».
На практике величины углов измеряют с помощью транспортира. Для более точных измерений пользуются и другими приборами.
Площадь многоугольника.
Площадь произвольной плоской фигуры и её измерение.
Формула Герона
S = √p(p - a)(p - b)(p - c)
3. Формула площади треугольника по двум сторонам и углу между ними
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
S = | a · b · sin γ | |
4. Формула площади треугольника по трем сторонам и радиусу описанной окружности
S = | a · b · с |
4R |
5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
S = p · r |
Формулы площади квадрата
1. Формула площади квадрата по длине стороны
Площадь квадрата равна квадрату длины его стороны.
S = a2
2. Формула площади квадрата по длине диагонали
Площадь квадрата равна половине квадрата длины его диагонали.
|
S = | d2 | |
Формулы площади ромба
1. Формула площади ромба по длине стороны и высоте
S = a · h
2. Формула площади ромба по длине стороны и углу
S = a2 · sin α
3. Формула площади ромба по длинам его диагоналей
S = | d1 · d2 | |
1. Формула Герона для трапеции
S = | a + b | √(p - a)(p - b)(p - a - c)(p - a - d) |
|a - b| |
2. Формула площади трапеции по длине основ и высоте
Площадь трапеции равна произведению полусуммы ее оснований на высоту
S = | (a + b) · h | ||||
Формулы площади круга
Формула площади круга через радиус
S = π r2
Площадь круга
S = | π d2 | |
Длина отрезка и ее измерение.
Измерить отрезок – значит найти его длину. Длина отрезка – это расстояние между его концами.
Измерение отрезков производится путём сравнения данного отрезка с другим отрезком, принятым за единицу измерения. Отрезок, принятый за единицу измерения, называется единичным отрезком.
Если за единичный отрезок принят сантиметр, то для определения длины данного отрезка надо узнать, сколько раз в данном отрезке помещается сантиметр. В этом случае измерение удобно производить с помощью сантиметровой линейки.
Начертим отрезок AB и измерим его длину. Приложим шкалу сантиметровой линейки к отрезку AB так, чтобы её нулевая точка (0) совпала с точкой A:
Если при этом окажется, что точка B совпадает с некоторым делением шкалы – например, 5, то говорят: длина отрезка AB равна 5 см, и пишут: AB = 5 см.
Свойства измерения отрезков
Когда точка делит отрезок на две части (на два отрезка), длина всего отрезка равна сумме длин этих двух отрезков.
Рассмотрим отрезок AB:
Точка C делит его на два отрезка: AC и CB. Мы видим, что AC = 3 см, CB = 4 см и AB = 7 см. Таким образом, AC + CB = AB.
|
|
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!