На тему: «сжатие речи на основе алгоритма векторного квантования» — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

На тему: «сжатие речи на основе алгоритма векторного квантования»

2019-08-04 123
На тему: «сжатие речи на основе алгоритма векторного квантования» 0.00 из 5.00 0 оценок
Заказать работу

Пояснительная записка

к курсовому проекту

по дисциплине «Цифровая обработка сигналов»

На тему: «сжатие речи на основе алгоритма векторного квантования»

 

2006


Аннотация

В данной курсовой работе представлена разработка алгоритма функционирования системы, обеспечивающей сжатие речи с помощью векторного квантования, и программная реализация алгоритма в системе MATLAB и на языке С.

Приводится исследование влияния на работоспособность системы аддитивных шумов, разработка и исследование программной реализации системы на основе ЦПОС. Разработана система сжатия речи, обеспечивающая сжатие речи до уровня 2400 бит/с и ниже и и подсистема декодирования в реальном времени с помощью алгоритма векторного квантования. Предусмотрены несколько ступеней сжатия. Обеспечена работа системы в двух режимах: дикторо-зависимом и дикторо-независимом. Система реализована в пакете MATLAB и на языке С.


СОДЕРЖАНИЕ

 

Введение

1. Постановка задачи

2. Описание существующих методов сжатия речи

3. Описание выбранного метода сжатия

4. Разработка программы на MATLab

5. Тестирование на MATLab

6. Системные требования

Заключение

Библиографический список

Приложение А. Текст программы на MATLab

Приложение Б. Текст программы на С


ВВЕДЕНИЕ

 

При передаче речи по цифровым каналам связи, будь то сотовая или Интернет-телефония, самый важный вопрос - это сколько информации (число бит в единицу времени) придется передавать по каналам, чтобы снабдить пользователя качественной голосовой связью. Ответ на него в каком-то смысле определяет все - стоимость и качество предоставляемых пользователям услуг и аппаратуры, емкость и масштабируемость сети передачи данных и многое другое.

Сжатие речи при ее передаче сокращает объем передаваемых данных, затраты и, благодаря этому, позволяет снижать цены на услуги и привлекать новых пользователей. Именно поэтому рынок цифровой телефонии развивается под непосредственным технологическим диктатом ученых и разработчиков кодеков речи.

Очевидно, что, начиная с каких-то пороговых значений соотношения скорости передачи и доступной емкости каналов, операторы связи имеют достаточную (для развития и своего, и рынка) прибыль. В настоящее время можно сказать, что этот порог уже превышен. Это привело к тому, что расценки на цифровую связь стали более чем конкурентны по сравнению с проводной аналоговой, а благодаря скорому переходу к кодекам речи на скорости порядка 2,4 кбит/с и ниже, цена минуты междугородного разговора может в ближайшие годы снизиться до нескольких центов за минуту.

Сказав про успехи, нельзя не сказать хотя бы пару слов и о недостатках. Качество звучания сжатой речи, что в сотовой, что в Интернет-телефонии оставляет желать лучшего. Некоторые (из тех, кто имеет такой выбор) до сих пор предпочитают аналоговые сотовые сети цифровым, поскольку в последних речь часто звучит механически, случаются посторонние звуки и т. п. - и все из-за сжимающих кодеков речи, так как в остальном цифровые протоколы передачи обеспечивают лучшее качество звучания. В компьютерной телефонии снижению качества, помимо кодеков речи, способствует заметное запаздывание сигнала и ошибки при сборке пакетов. Впрочем, понятно, что если с кодеком на 2,4 кбит/с "узкий" канал справляется с трудом, то на скорости 1,2 кбит/с проблем будет меньше. Да и пропускная способность компьютерных сетей возрастает настолько быстро, что в ближайшей перспективе сетевая задержка снизится в несколько раз. И тогда и у пользователей, и у операторов на первое место могут встать высокие требования именно к низкоскоростным кодекам речи.

Речь представляет собой колебания сложной формы, зависящей от произносимых слов, тембра голоса, интонации, пола и возраста говорящего. Спектр речи весьма широк (примерно от 50 до 10000 Гц), но для передачи речи в аналоговой телефонии когда-то отказались от составляющих, лежащих вне полосы 0,3-3,4 кГц, что ухудшило восприятие ряда звуков (например, шипящих, существенная часть энергии которых сосредоточена в верхней части речевого спектра), но мало затронуло разборчивость. Ограничение частоты снизу (до 300 Гц) также ухудшает восприятие из-за потерь низкочастотных гармоник основного тона. А в цифровой телефонии к влиянию ограничения спектра добавляются еще шумы дискретизации, квантования и обработки, дополнительно зашумляющие речь.

Решающими в выборе полосы 0,3-3,4 кГц были экономические соображения и нехватка телефонных каналов. Потребности пользователей в каналах сделали тогда вопросы качества речи второстепенными.

Для совместимости по полосе с распространенными аналоговыми сетями в цифровой телефонии отсчеты аналоговой речи приходится брать согласно теореме Котельникова с частотой 8 кГц - не меньше двух отсчетов на 1 Гц полосы. Правда, в цифровой телефонии существует принципиальная возможность использовать спектр речи за пределами полосы 0,3-3,4 кГц и тем самым повысить качество, но эти методы не реализуются, так как они вычислительно пока еще очень сложны. Впрочем, кое-что появляется: уже разработаны универсальные кодеки для компьютерной телефонии и мультимедиа, способные передавать не только речь, но и музыку. При полосе исходного сигнала до 6 кГц и тактовой частоте отсчетов около 16 кГц сжатый цифровой сигнал требует для передачи канал в 12 кбит/с.

Озвученная речь, представляющая большую трудность для сжатия, образуется с помощью звуковых связок человека. Скорость их периодических колебаний задает так называемую частоту основного тона (ОТ) - энергию голосового тракта человека, который представляет собой объемный резонатор. Голосовой тракт формирует спектральную окраску речи или, другими словами, ее формантную структуру. Другое название голосового тракта - синтезирующий фильтр - нам более удобно, так как математическое описание речеобразования обычно ведется в терминах линейной фильтрации. Тогда, условно, речевой сигнал можно разделить на две составляющие, отвечающие за (1) ОТ (возбуждение фильтра) и (2) голосовой тракт (формантная структура сигнала). Соответственно, большинство на сегодня используемых алгоритмов, так или иначе, решают один вопрос - как наиболее эффективно выделить и сокращенно описать обе составляющие.


ПОСТАНОВКА ЗАДАЧИ

Необходимо разработать систему сжатия речи, обеспечивающую сжатие речи до уровня 2400 бит/с и ниже с помощью алгоритмов векторного квантования. Предусмотреть несколько ступеней сжатия. Обеспечить работу системы в двух режимах: дикторо-зависимом и дикторо-независимом. Реализовать систему в пакете MATLAB и подсистему декодирования в реальном времени с помощью ЦПОС TMS320C7711/5402.


Рисунок 2.3 – Векторное квантование

 

Входной вектор si представляет собой вектор признаков речевого сигнала (например, спектральных),

 

.

 

Кодер отображает входной вектор  в выходной символ un, n = 1, 2, …, L с помощью кодовой книги. Кодовая книга содержит L векторов

 

, n = 1, 2, …, L.

 

Предположим, что канал не имеет шумов, т.е. .

Векторный квантователь функционирует следующим образом. Входной вектор  сравнивается с каждым вектором из кодовой книги. В результате из кодовой книги выбирается вектор , ближайший к вектору , и в канал передается символ un, представляющий адрес найденного кодового вектора. На приемной стороне с помощью полученного адреса un восстанавливается вектор признаков речевого сигнала , на основе которого синтезируется речевой процесс. В такой интерпретации векторное квантование, по сути, является распознаванием образов, где вектор  представляет собой входной образ, кодовая книга соответствует базе эталонов.

В качестве меры расстояния между входными векторами и векторами из кодовой книги обычно используется сумма квадратов отклонений si (k) и :

 

           (2.3)

 

Кодовая книга (база эталонов) создается путем разделения N - мерного пространства признаков на L непрерывающихся ячеек (областей) (рисунок 2.3,а). Каждая ячейка ассоциируется Cn с вектором-эталоном . Если входной вектор  принадлежит ячейке Cn, то квантователь назначает этому вектору символ un, который представляет собой адрес вектора-эталона данной ячейки (центроида).

В простейшем случае, если вектор  представляет собой блок отсчетов речевого сигнала, рассмотренная схема квантования является обобщением импульсной кодовой модуляции (ИКМ), и называется векторной ИКМ. В векторной ИКМ (ВИКМ) число битов, приходящихся один отсчет речевого сигнала определяется по формуле

 

                  (2.4)

 

ВИКМ имеет преимущество перед различными видами ИКМ [ 1 ], если .

Процесс проектирования кодовой книги, который связан с обучением, может быть реализован двумя способами. В первом случае кодовая книга разрабатывается на основе алгоритма К-средних. Рекомендуется, чтобы обучающая выборка содержала по 40 примеров векторов признаков для каждого кодового вектора. Вычислительную сложность разработки кодовой книги можно снизить, если определенным образом структурировать кодовую книгу. Действительно, так как в процессе построения кодовой книги выполняется поиск среди L векторов-эталонов, то упорядочение книги может привести к сокращению времени поиска. Для ускорения поиска часто применяют бинарные деревья [2]. Сложность вычислений можно уменьшить, если в кодовой книге отдельно хранить нормализованные векторы  и масштабный коэффициент G (коэффициент усиления).

Во втором случае кодовая книга создается с помощью алгоритма обучения, в соответствии с которым положение центроидов на каждом шаге уточняется по рекуррентной формуле

 

,   (2.5)

 

где t – номер шага; α - коэффициент обучения, α ~ .Формула уточняет положение только того центроида, для которого входной вектор  оказался ближайшим.

Выражение (2.5) соответствует правилу обучения состязательных нейронных сетей, в частности, правилу Кохонена. Подробнее см. в [2].

Существует различные схемы сжатия речи c помощью алгоритмов векторного квантования. Большинство из них основано на схеме “анализ-синтез”. Применяют два варианта таких схем – без обратной связи и с обратной связью [1]. В основе каждой из схем лежит модель синтеза речи на основе коэффициентов линейного предсказания [1]. В соответствии с этой моделью речь может быть получена путем подачи специальным образом подобранного возбуждающего сигнала на вход линейного фильтра, который моделирует резонансные частоты голосового тракта. Передаточная функция фильтра описывается уравнением

 

              (2.6)

 

где G - коэффициент усиления, ai - коэффициенты линейного предсказания, P - порядок предсказателя.

Возможная структурная схема системы низкоскоростного кодирования речи с помощью алгоритмов векторного квантования изображена на рисунке 2.2.

 

 

Рисунок 2.4 – Низкоскоростное кодирование речи

 

Процедура кодирования речи сводится к следующему:

- оцифрованный речевой сигнал s [ n ] нарезается на сегменты длительностью 20 мс (при fg =8 КГц в каждом сегменте будет по 160 выборок);

- для каждого сегмента вычисляются с помощью устройства оценивания (УО) параметры фильтра линейного предсказания и определяется ошибка предсказания d [ n ], соответствующая функции возбуждения;

- функция возбуждения и параметры фильтра линейного предсказания кодируются с помощью отдельных векторных квантователей и передаются в канал.

Процедура декодирования заключается в пропускании восстановленного сигнала возбуждения через синтезирующий фильтр (2.4), параметры которого переданы одновременно с функцией возбуждения.

Приведенное описание процессов кодирования и декодирования речи не является исчерпывающим, оно объясняет лишь принцип действия кодера. Практические схемы намного сложнее, и это связано в основном со следующими двумя моментами.

Во-первых, на рисунке 2.2 изображена схема без обратной связи. Лучшего качества синтезируемой речи можно добиться в схемах с обратной связью [1]. Однако такие схемы сложнее.

Во-вторых, описанная выше схема, использует кратковременное предсказание и не обеспечивает в достаточной степени устранения избыточной речи. Поэтому в дополнение к кратковременному предсказанию используется еще и долговременное предсказание [1]. Выходной сигнал фильтра кратковременного предсказания используется для оценивания параметров фильтра долговременного предсказания – задержки τ и коэффициента предсказания a:

 

 

При оценке качества кодирования и сопоставлении различных кодеров оцениваются разборчивость речи и качество синтеза речи (качество звучания). Для оценки разборчивости речи используется метод ДРТ (диагностический рифмованный текст). В этом методе подбираются пары близких по звучанию слов, отличающиеся отдельными согласными (“кол-гол-пол”), которые многократно произносятся рядом дикторов, и по результатам испытаний оценивается доля искажений [3,4].

Для оценки качества звучания используется критерий ДМП (диагностическая мера приемлемости) [4]. Испытания заключаются в чтении несколькими дикторами, мужчинами и женщинами, ряда специально подобранных фраз, которые прослушиваются на выходе тракта связи рядом экспертов-слушателей, выставляющих свои оценки по 5-балльной шкале. Результатом является средняя оценка мнений (MOS).

Обратим внимание на следующий факт. Если кодовая книга создается на обучающих данных, принадлежащих только одному диктору, тоне следует ожидать, что она будет обеспечивать хорошее качество звучания для другого диктора. Соответственно, кодовая книга, полученная в лабораторных условиях, не обеспечит того же качества звучания при записи речи в шумовой обстановке, например, в салоне автомобиля. Для построения дикторо-независимой системы необходимо проектировать кодовую книгу на речевых сигналах различных дикторов.


СИСТЕМНЫЕ ТРЕБОВАНИЯ

 

· 486DX4-100 или лучше;

· 16 (рекомендуется) Мбайт;

· 512 Кб минимум свободного места жесткого диска;

· Microsoft Windows v3.1 или выше;

· MATLAB для Windows v4.0 или лучше

· программное обеспечение также запускается в UNIX и других средах рабочей станции.


Заключение

 

В данном курсовом проекте с помощью пакета MATLAB был разработан ряд функций, осуществляющих сжатие речи по алгоритму векторного квантования, обеспечивающих сжатие речи до уровня 2400 бит/с и ниже. Предусмотрено несколько ступеней сжатия. Обеспечена работа системы в двух режимах: дикторо-зависимом и дикторо-независимом.


Библиографический список

1. Бондарев В.Н. Цифровая обработка сигналов: методы и средства/ В.Н. Бондарев, Г. Трестер, В.Н. Чернега.- Харьков: Изд-во Конус, 2001.-398 с.

2. Бондарев В.Н. Искусственный интеллект/ В.Н. Бондарев, Ф.Г. Аде.- Севастополь: Изд-во СевНТУ, 2002.-616 с.

3. Рабинер Л.Р Цифровая обработка речевых сигналов/ Л.Р. Рабинер, Р.В. Шафер.- М.: Радио и Связь. 1981.-495 с.

4. Ратынский М.В. Основы сотовой связи/ М.В. Ратынский; Под ред. Д.Б. Зимина.- М.: Радио и Связь, 1998.- 248 с.

5. Makhoul J. Vector Qvantization // Speech Coding Proceedings of the IEEE, 1985.- Vol. 73. - N 11.- P.1551-1588.

Пояснительная записка

к курсовому проекту

по дисциплине «Цифровая обработка сигналов»

на тему: «сжатие речи на основе алгоритма векторного квантования»

 

2006


Аннотация

В данной курсовой работе представлена разработка алгоритма функционирования системы, обеспечивающей сжатие речи с помощью векторного квантования, и программная реализация алгоритма в системе MATLAB и на языке С.

Приводится исследование влияния на работоспособность системы аддитивных шумов, разработка и исследование программной реализации системы на основе ЦПОС. Разработана система сжатия речи, обеспечивающая сжатие речи до уровня 2400 бит/с и ниже и и подсистема декодирования в реальном времени с помощью алгоритма векторного квантования. Предусмотрены несколько ступеней сжатия. Обеспечена работа системы в двух режимах: дикторо-зависимом и дикторо-независимом. Система реализована в пакете MATLAB и на языке С.


СОДЕРЖАНИЕ

 

Введение

1. Постановка задачи

2. Описание существующих методов сжатия речи

3. Описание выбранного метода сжатия

4. Разработка программы на MATLab

5. Тестирование на MATLab

6. Системные требования

Заключение

Библиографический список

Приложение А. Текст программы на MATLab

Приложение Б. Текст программы на С


ВВЕДЕНИЕ

 

При передаче речи по цифровым каналам связи, будь то сотовая или Интернет-телефония, самый важный вопрос - это сколько информации (число бит в единицу времени) придется передавать по каналам, чтобы снабдить пользователя качественной голосовой связью. Ответ на него в каком-то смысле определяет все - стоимость и качество предоставляемых пользователям услуг и аппаратуры, емкость и масштабируемость сети передачи данных и многое другое.

Сжатие речи при ее передаче сокращает объем передаваемых данных, затраты и, благодаря этому, позволяет снижать цены на услуги и привлекать новых пользователей. Именно поэтому рынок цифровой телефонии развивается под непосредственным технологическим диктатом ученых и разработчиков кодеков речи.

Очевидно, что, начиная с каких-то пороговых значений соотношения скорости передачи и доступной емкости каналов, операторы связи имеют достаточную (для развития и своего, и рынка) прибыль. В настоящее время можно сказать, что этот порог уже превышен. Это привело к тому, что расценки на цифровую связь стали более чем конкурентны по сравнению с проводной аналоговой, а благодаря скорому переходу к кодекам речи на скорости порядка 2,4 кбит/с и ниже, цена минуты междугородного разговора может в ближайшие годы снизиться до нескольких центов за минуту.

Сказав про успехи, нельзя не сказать хотя бы пару слов и о недостатках. Качество звучания сжатой речи, что в сотовой, что в Интернет-телефонии оставляет желать лучшего. Некоторые (из тех, кто имеет такой выбор) до сих пор предпочитают аналоговые сотовые сети цифровым, поскольку в последних речь часто звучит механически, случаются посторонние звуки и т. п. - и все из-за сжимающих кодеков речи, так как в остальном цифровые протоколы передачи обеспечивают лучшее качество звучания. В компьютерной телефонии снижению качества, помимо кодеков речи, способствует заметное запаздывание сигнала и ошибки при сборке пакетов. Впрочем, понятно, что если с кодеком на 2,4 кбит/с "узкий" канал справляется с трудом, то на скорости 1,2 кбит/с проблем будет меньше. Да и пропускная способность компьютерных сетей возрастает настолько быстро, что в ближайшей перспективе сетевая задержка снизится в несколько раз. И тогда и у пользователей, и у операторов на первое место могут встать высокие требования именно к низкоскоростным кодекам речи.

Речь представляет собой колебания сложной формы, зависящей от произносимых слов, тембра голоса, интонации, пола и возраста говорящего. Спектр речи весьма широк (примерно от 50 до 10000 Гц), но для передачи речи в аналоговой телефонии когда-то отказались от составляющих, лежащих вне полосы 0,3-3,4 кГц, что ухудшило восприятие ряда звуков (например, шипящих, существенная часть энергии которых сосредоточена в верхней части речевого спектра), но мало затронуло разборчивость. Ограничение частоты снизу (до 300 Гц) также ухудшает восприятие из-за потерь низкочастотных гармоник основного тона. А в цифровой телефонии к влиянию ограничения спектра добавляются еще шумы дискретизации, квантования и обработки, дополнительно зашумляющие речь.

Решающими в выборе полосы 0,3-3,4 кГц были экономические соображения и нехватка телефонных каналов. Потребности пользователей в каналах сделали тогда вопросы качества речи второстепенными.

Для совместимости по полосе с распространенными аналоговыми сетями в цифровой телефонии отсчеты аналоговой речи приходится брать согласно теореме Котельникова с частотой 8 кГц - не меньше двух отсчетов на 1 Гц полосы. Правда, в цифровой телефонии существует принципиальная возможность использовать спектр речи за пределами полосы 0,3-3,4 кГц и тем самым повысить качество, но эти методы не реализуются, так как они вычислительно пока еще очень сложны. Впрочем, кое-что появляется: уже разработаны универсальные кодеки для компьютерной телефонии и мультимедиа, способные передавать не только речь, но и музыку. При полосе исходного сигнала до 6 кГц и тактовой частоте отсчетов около 16 кГц сжатый цифровой сигнал требует для передачи канал в 12 кбит/с.

Озвученная речь, представляющая большую трудность для сжатия, образуется с помощью звуковых связок человека. Скорость их периодических колебаний задает так называемую частоту основного тона (ОТ) - энергию голосового тракта человека, который представляет собой объемный резонатор. Голосовой тракт формирует спектральную окраску речи или, другими словами, ее формантную структуру. Другое название голосового тракта - синтезирующий фильтр - нам более удобно, так как математическое описание речеобразования обычно ведется в терминах линейной фильтрации. Тогда, условно, речевой сигнал можно разделить на две составляющие, отвечающие за (1) ОТ (возбуждение фильтра) и (2) голосовой тракт (формантная структура сигнала). Соответственно, большинство на сегодня используемых алгоритмов, так или иначе, решают один вопрос - как наиболее эффективно выделить и сокращенно описать обе составляющие.


ПОСТАНОВКА ЗАДАЧИ

Необходимо разработать систему сжатия речи, обеспечивающую сжатие речи до уровня 2400 бит/с и ниже с помощью алгоритмов векторного квантования. Предусмотреть несколько ступеней сжатия. Обеспечить работу системы в двух режимах: дикторо-зависимом и дикторо-независимом. Реализовать систему в пакете MATLAB и подсистему декодирования в реальном времени с помощью ЦПОС TMS320C7711/5402.



Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.056 с.